Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-06T07:19:13.100Z Has data issue: false hasContentIssue false

In Situ Observation of an Electrochemical Etching Reaction in Silicon

Published online by Cambridge University Press:  15 February 2011

Frances M. Ross
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720;, [email protected]
Peter C. Searson
Affiliation:
Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218;, [email protected]
Get access

Abstract

We describe a TEM specimen holder which has been designed and constructed in order to observe the process of electrochemical pore formation in silicon. The holder incorporates electrical feedthroughs and a sealed reservoir for the electrolyte and it accepts lithographically patterned silicon specimens. We present ex situ observations of progressive pore propagation and show dynamic, in situ observations of electrolyte movement within the pores.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990)Google Scholar
2. Theunissen, M. J., J. Electrochem. Soc. 119, 351 (1972)Google Scholar
3. Chuang, S.-F., Collins, S. D. and Smith, R. L., Appl. Phys. Lett. 55, 154 and 675 (1989)Google Scholar
4. Lehmann, V. and Föll, H., J. Electrochem. Soc. 137, 653 (1990)Google Scholar
5. Smith, R. L. and Collins, S. D., J. Appl. Phys. 71, R1 (1992)Google Scholar
6. Searson, P. C., Macaulay, J. M. and Ross, F. M., J. Appl. Phys. 72, 253 (1992)Google Scholar
7. Lehmann, V., J. Electrochem. Soc. 140, 2836 (1993)Google Scholar
8. Krumme, J.-P. and Straumanis, M. E., Trans. Met. Soc. AIME 239, 396 (1967)Google Scholar
9. Chase, B. D. and Holt, D. B., J. Electrochem. Soc. 119, 314 (1972)Google Scholar
10. Faktor, M. M., Fiddyment, D. G. and Taylor, M.R., J. Electrochem. Soc. 122, 1566 (1975)Google Scholar
11. Ross, F. M., Oskam, G., Searson, P. C., Macaulay, J. M. and Liddle, J. A., submitted to Phil. Mag. A (1995)Google Scholar
12. Munder, H., Berger, M. G., Frohnhoff, S., Thönissen, M. and Lüth, H., Lumin, J.. 57, 5 (1993)Google Scholar
13. Berger, M. G., Thönissen, M., Arens-Fischer, R., Münder, H., Lüth, H., Arntzen, M. and Theiss, W., Thin Solid Films 255, 313 (1995)Google Scholar
14. Searson, P. C., Appl. Phys. Lett. 59, 832 (1991)Google Scholar
15. Tsao, S. S., Guilinger, T.R., Kelly, M.J. and Clews, P.J., J. Electrochem. Soc. 136, 586 (1989)Google Scholar
16. Beale, M. I. J., Chew, N. G., Uren, M. J., Cullis, A. G. and Benjamin, J. D., Appl. Phys. Lett. 46, 86 (1985)Google Scholar
17. Beale, M. I. J., Benjamin, J. D., Uren, M. J., Chew, N. G. and Cullis, A. G., J. Cryst. Growth 73, 622 (1985)Google Scholar
18. Smith, R. L., Chuang, S.-F. and Collins, S. D., J. Electronic Materials 17, 533 (1988)Google Scholar