No CrossRef data available.
Article contents
In Situ Monitoring of the Electrochemical Absorption of Deuterium into Palladium by X-Ray Diffraction using Synchrotron-Wiggler Radiation
Published online by Cambridge University Press: 10 February 2011
Abstract
With low energy x-rays, such as those from a Cu x-ray tube, only the outer few microns of a metallic sample can be probed. This low penetrating power prohibits structural studies from being carried out on the interior of an electrode in an electrochemical cell because of absorption by the cell material, electrodes and the electrolyte. The work described in this paper circumvents this problem by utilizing high energy, high brightness x-rays produced on the superconducting wiggler beam line, X-17C, at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The penetrating power of the higher energy x-rays allowed Pd diffraction spectra to be obtained in-situ on a 1 mm diameter Pd wire cathode during electrolysis of heavy water. Moreover, the beam (28 × 28 μm in cross-section) allowed diffraction spectra to be acquired as a function of distance across the sample. Spectra were recorded in 50 μm steps from the edge of the Pd wire to its core. This was done at 2 minute intervals as a function of electrolysis time. The α-β phase transition induced in the Pd while deuterium was electrochemically absorbed was observed by monitoring the Pd-(422) diffraction peaks. Results allowed the diffusion rate and the diffusivity of deuterium atoms in the Pd wire to be determined. Other features of the structural changes associated with the absorption of deuterium into Pd are reported.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1998