Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T10:33:31.376Z Has data issue: false hasContentIssue false

In Situ Intercalation/Polymerization of Melanin into Vanadium Pentoxide

Published online by Cambridge University Press:  10 February 2011

H. P. Oliveira
Affiliation:
Departamento de Química, FFCLRP/Universidade de São Paulo, Ribeirão Preto, SP, CEP 14040–901, Brazil, [email protected]
C. L. P. S. Zanta
Affiliation:
Departamento de Química, FFCLRP/Universidade de São Paulo, Ribeirão Preto, SP, CEP 14040–901, Brazil, [email protected]
A. C. Galina
Affiliation:
Departamento de Química, FFCLRP/Universidade de São Paulo, Ribeirão Preto, SP, CEP 14040–901, Brazil, [email protected]
C. F. O. Graeff
Affiliation:
Departamento de Física e Matemática
Get access

Abstract

In this work, intercalated material was prepared consisting of a regular interchange of organic/inorganic layers. The products were obtained by reacting 3,4-dihidroxi-fenilalanina (DL-DOPA) in a solution with V2O5.nH2O gel, which suffered an oxidative polymerization/intercalation process, forming a film with a dark blue metallic color. The films were characterized using UV\Vis transmission spectroscopy, FTLR, ESR, X-ray diffraction, dc conductivity, and cyclic voltammetry. The X-ray diffractograms indicate that the lamellar structure of the V2O5 is preserved but the inter-planar space increase from 1.18 nm to 1.38 nm. The FTIR and ESR spectra confirms that the V2O5 structure is preserved, however the presence of melanin induces the reduction of Vv ions to Viv. The increase in the inter-planar spacing is observed to increase the stability and reproducibility of the electrochemical insertion/de-insertion of Li+. This increase in stability is also observed in the electrochromic properties of the film, which are fully reproducible even after more than 60 oxidation-reduction cycles. The melanin affects also the activation energy of the dc conductivity which changes from 0.35 eV to 0.20 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cheetham, A. K., Science 264, 794 (1994).10.1126/science.264.5160.794Google Scholar
2. Judeinstein, P., Sanchez, C., J. Mater. Chem. 6, 511 (1996).10.1039/JM9960600511Google Scholar
3. Wu, C.-G., DeGroot, D. C., Marcy, H. O., Schindler, J. L., Kannewurf, C. R., Liu, Y.-J., Hirpo, W., Kanatzidis, M. G., Chem. Mater. 8, 1992 (1996).10.1021/cm9600236Google Scholar
4. Rosei, M. A., Mosca, L., Galluzzi, F., Synth. Met. 76, 331 (1996).10.1016/0379-6779(95)03483-ZGoogle Scholar
5. Livage, J., Solid Sate lonics 86–88, 935 (1996).10.1016/0167-2738(96)00336-0Google Scholar
6. Zajac, G. W., Gallas, J. M., Cheng, J., Eisner, M., Moss, S. C., Biochem, A. E. Alvarado-Swaisgoog. Biophys. Acta 1199, 271 (1994).10.1016/0304-4165(94)90006-XGoogle Scholar
7. Babonneau, F., Barboux, P., Josien, F. A., Livage, J., J. Chimie Physique 82, 761 (1985).10.1051/jcp/1985820761Google Scholar
8. Giannelis, E., in Materials Chemistry - An Emerging Discipline, Advances in chemistry Series 245, edited by Interrante, L. V., Caspar, L. A. and Ellis, A. B. (American Chemical Society, Washington DC, 1995), p. 259.Google Scholar
9. Bridelli, M. G., Capelletti, R., Crippa, P. R., Physiol. Chem. & Physics 12, 233 (1980).Google Scholar
10. Leroux, F., Goward, G., Power, W. P. and Nazar, L. F., J. Electrochem. Soc. 144, 3886 (1997).10.1149/1.1838107Google Scholar
11. –|–|–|Skaarup, K., Electrochimica Acta 38, 1215(1993).Google Scholar
12. –|Smyrl, H.-K., J. Electrochem.Soc 141, L25 (1994).Google Scholar
13. –|–|–|–|–|Lefebvre, N., Inorg. Chem. 21, 2758 (1982).Google Scholar
14. –|Mott, I. G., Adv. in Physics 18, 41 (1969).Google Scholar