Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:32:25.406Z Has data issue: false hasContentIssue false

Impurity Activation in N+ Ion-Implanted 6H-SiC with Pulsed Laser Annealing Method

Published online by Cambridge University Press:  21 March 2011

O. Eryu
Affiliation:
Department of Electrical and Computer Engineering Nagoya Institute of Technology, Nagoya 466–8555, Japan
K. Aoyama
Affiliation:
Department of Electrical and Computer Engineering Nagoya Institute of Technology, Nagoya 466–8555, Japan
K. Abe
Affiliation:
Department of Electrical and Computer Engineering Nagoya Institute of Technology, Nagoya 466–8555, Japan
K. Nakashima
Affiliation:
Department of Electrical and Computer Engineering Nagoya Institute of Technology, Nagoya 466–8555, Japan
Get access

Abstract

We have succeeded in pulsed laser annealing of N+ ion-implanted n-type 6H-SiC for increasing the carrier density near surface in order to decrease contact resistance, which induces little redistribution of implanted impurities after laser irradiation. By repeated laser irradiation at low energy density, the ion–implanted impurities were electrically activated without melting the surface region. SiC substrates with impurity concentration of 2×1018 /cm3 were implanted with 30 keV N+ ions with dose of 4.7×1013/cm2. After pulsed laser annealing, a contact resistance was measured to be 5.7×10−5 Ωcm2 using Al electrode on the N+ -implanted layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakata, T., Mizutani, Y., Mikota, M., Takagi, T., and Nishino, S., Nucl. Instrum. Methods B74, 131 (1993).Google Scholar
2. Itoh, H., Ohshima, T., Aoki, Y., Abe, K., Yoshikawa, M., Nashiyama, I., Okumura, H., Yoshida, S., Uedono, A., and Tanigawa, S., J. Appl. Phys. 82, 5339 (1997).Google Scholar
3. Eryu, O., Okuyama, Y., Nakashima, N., Nakata, T., and Watanabe, M., Appl. Phys. Lett. 67, 2052 (1995).Google Scholar
4. Eryu, O., Kume, T. Nakashima, K., Nakata, T., and Inoue, M., Nucl. Instrum. Methods B121, 419 (1997).Google Scholar
5. Nakashima, K., Eryu, O., Kume, T., Nakata, T., and Inoue, M., Materials Science Forum 264–268, 779 (1998).Google Scholar
6. Nakashima, K., Eryu, O., Ukai, S., Yoshida, K., and Watanabe, M., Materials Science Forum, 338–342, 1005 2000).Google Scholar
7. Hishida, Y., Watanabe, M., Nakashima, K. and Eryu, O., Materials Science Forum, 338–342, 873 (2000).Google Scholar
8. Ahmed, S., Barbero, C. J. and Sigmon, T. W., Appl. Phys. Lett., 66, 712 (1995).Google Scholar
9. Reeves, G. k. and Harrison, H. B., IEEE Electron Device Lett. EDL–3, 111 (1982).Google Scholar
10. Murakami, K., Eryu, O., Takita, K., and Masuda, K., Phys. Rev. Lett. 59, 2203 (1987).Google Scholar
11. Sands, D., Key, P. H., Schalf, M., Walton, C.D., Anthony, C. J. and Uren, M. J., Materials Science Forum, 338–342, 655 (2000).Google Scholar
12. Chou, S. Y., Chang, Y., Weiner, K. H., Sigmon, T. W., and Parsons, J. D., Appl. Phys. Lett. 56, 530 (1990).Google Scholar
13. Eryu, O., Aoyama, K., Abe, K., and Nakashima, K. in extended abstracts 1st International Workshop on Ultra-Low-Loss Power Device Technology, (Research and Development Association for Future Electron Devices, Tokyo, 2000), p. 171.Google Scholar
14. Crofton, J., Porter, L. M., and Williams, J. R., Phys. Stat. Sol. (b) 202, 581 (1997).Google Scholar