Article contents
Improvements of Thermoelectric Performances in AgSbTe2 System With in-situ Ag2Te Nano-Precipitations
Published online by Cambridge University Press: 01 February 2011
Abstract
AgSbTe2 is the critical component in both LAST-m and TAGS-x system, which are two state-of-the-art mid-temperature thermoelectric bulk nanocomposites. By adjusting the Ag2Te/Sb2Te3 ratio, Sb2Te3 and Ag2Te precipitated samples were obtained with x = 0.68 to 0.74 and x = 0.84 to 0.90 (x as in (Ag2Te)x/2(Sb2Te3)1-x/2), respectively. The single phased AgSbTe2 was obtained with the x value of 0.78 and 0.81, which is consistent of the previous results on the phase diagram of (Ag2Te)x(Sb2Te3)1-x system. Comparing the effect of the two different precipitates, Ag2Te are much effective for the improvements of thermoelectric properties in AgSbTe2 nanocomposites. Utilizing the high-resolution transmission electron microscopy, Ag2Te was observed as nanodots and nano-lamellae embedded in the AgSbTe2 matrix, which can be related to the energy filtering effect for the increase of Seebeck coefficient. The relationship among the composition, microstructure and thermoelectric properties was systematically studied. It can be noticed that the thermoelectric properties of AgSbTe2 system are very sensitive to the composition, especially at low temperature. The maximum figure of merit ZT value of 1.53 was obtained at 500 K for Ag0.84Sb1.16Te2.16 with 40% increase comparing with the single phased sample.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2010
References
- 1
- Cited by