Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T00:02:54.297Z Has data issue: false hasContentIssue false

Improvement of Wrinkles in Roll-to-Roll Microwave Plasma CVD Graphene

Published online by Cambridge University Press:  16 July 2015

Takatoshi Yamada*
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan. Technology Research Association for Single Wall Carbon Nanotube (TASC), 1-1-1 Higashi, Tsukuba 305-8565, Japan.
Nayuta Shimada
Affiliation:
Technology Research Association for Single Wall Carbon Nanotube (TASC), 1-1-1 Higashi, Tsukuba 305-8565, Japan.
Kazuki Uekusa
Affiliation:
Technology Research Association for Single Wall Carbon Nanotube (TASC), 1-1-1 Higashi, Tsukuba 305-8565, Japan.
Masataka Hasegawa
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan. Technology Research Association for Single Wall Carbon Nanotube (TASC), 1-1-1 Higashi, Tsukuba 305-8565, Japan.
Get access

Abstract

Wrinkle-less graphene films are obtained through roll-to-roll microwave plasma chemical vapor deposition by using flexible copper/polyimide (Cu/PI) webs. Raman spectra suggests that the average domain size of the obtained graphene on the flexible Cu/PI is almost the same compared to the graphene on a Cu web that includes wrinkles. Also, by utilizing the flexible Cu/PI webs, the compressive strains decreased. The sheet resistances of graphene deposited on the Cu/PI are (1∼5)×104Ω, which is two orders of magnitude lower than those of graphene deposited on the Cu webs. Our results suggest that the controlling the expansion of web material an important technology to improve graphene transparent conductive properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bonaccorso, F., Sun, Z., Hasan, T. and Ferrari, A. C., Nature Photonics 4, 611 (2010).CrossRefGoogle Scholar
Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K. L. and Hone, J., Nature Nanotechnol. 5. 722 (2010).CrossRefGoogle Scholar
Sano, E. and Otsuji, T., Jpn. J. Appl. Phys. 48, 091605 (2009).CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., Balakrishan, J., Lei, T., Kim, H. R., Somg, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B, H. and Iijima, S., Nature Nanotechnol. 5, 574 (2011).CrossRefGoogle Scholar
Kobayashi, T., Bando, M., K.imura, N., Shimizu, K., Kadono, K., Umezu, N., Miyahara, K., Hayazaki, S., Nagai, S., Mizuguchi, Y., Murakami, Y., Hobara, D., Appl. Phys. Lett. 102, 023112 (2013).CrossRefGoogle Scholar
Vlassiouk, I., Fulvio, P., Meyer, H., Lavrik, N., Dai, S., Datskos, P. and Smirnov, S., Carbon 54, 58 (2013).CrossRefGoogle Scholar
Yamada, T., Ishihara, M., Kim, J., Hasegawa, M. and Iijima, S., Carbon 50, 2615 (2012).CrossRefGoogle Scholar
Yamada, T., Kim, J., Ishihaa, M. and Hasegawa, M., J. Phys. D 46, 063001 (2013).CrossRefGoogle Scholar
Yamada, T., Ishihara, M. and Hsegawa, M., Thin Solid Films 532, 89 (2013).CrossRefGoogle Scholar
Cancado, L. G., Takai, K., Enoki, T., Endo, M., Kim, Y. A., Mizusaki, H., Jorio, A., Coelho, L. N., M-Paniago, R., Pimenta, M. A., Appl. Phys. Lett. 88 163106 (2006).CrossRefGoogle Scholar
Malard, L. M., Pimenta, M. A., Dresselhaus, G. and Dresselhaus, M. S., Phys. Repo. 473, 51(2009).CrossRefGoogle Scholar
Okigawa, Y., Kato, R., Yamada, T., Ishihara, M. and Hasegawa, M., Carbon, DOI: 10.1016/j.carbon.2014.10.029.CrossRefGoogle Scholar
Ni, Z. H., Yu, T., Lu, Y. H., Wang, Y. Y., Feng, Y. D., Shen, Z. X., Nano Lett. 8, 2301 (2008).Google Scholar