Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:46:22.963Z Has data issue: false hasContentIssue false

Improvement of the Luminescing Behaviour of Simmplanted SiO2 Films

Published online by Cambridge University Press:  15 February 2011

T. Schuster
Affiliation:
Physik-Department E 16, Technische Universität München, D-85747 Garching, Germany
T. Dittrich
Affiliation:
Physik-Department E 16, Technische Universität München, D-85747 Garching, Germany
H. E. Porteanu
Affiliation:
Physik-Department E 16, Technische Universität München, D-85747 Garching, Germany
T. Fischer
Affiliation:
Physik-Department E 16, Technische Universität München, D-85747 Garching, Germany
E. Hechtl
Affiliation:
Physik-Department E 16, Technische Universität München, D-85747 Garching, Germany
V. Petrova-Koch
Affiliation:
Physik-Department E 16, Technische Universität München, D-85747 Garching, Germany
F. Koch
Affiliation:
Physik-Department E 16, Technische Universität München, D-85747 Garching, Germany
Get access

Abstract

In previous work we reported on the observation of continuously tunable photoluminescence in Si+-implanted SiO2-films with moderate intensities. In this paper we demonstrate improved performance of such samples. The photoluminescence intensity increases abruptly up to two orders of magnitude when the anneal temperature is elevated to values higher than 1000…1100°C. This strong photoluminescence degrades less than that of porous silicon. Very fine tunability in the spectral range from 2.1 eV to 1.3 eV is achieved in samples implanted with a graded dose. In the analysis of the results we try to distinguish between the contributions of the Si-nanocrystals and of the oxide related defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shimizu-Iwayama, T., Nako, S., Saitoh, K., Appl. Phys. Lett. 65, 1814 (1994).Google Scholar
2.Atwater, H.A., Sheglov, K.V., Vahala, K.J., Flayan, R.C., Brougersma, M.L., Polman, A., MRS Proc. 316, 409 (1994).Google Scholar
3.Mutti, P., Ghislotti, G., Bertoni, S., Benoldi, L., Gerofilini, G.F., Meda, L., Grilliand, E., Guzzi, M., Appl. Phys. Lett. 66, 851 (1995).Google Scholar
4.Fischer, T., Petrova-Koch, V., Sheglov, K., Brandt, M.S., Koch, F., EMR Spring Meeting 1995.Google Scholar
5.Griscom, D.L., J. of Chemical Soc. of Japan 99, 923 (1991).Google Scholar
6.Lifshitz, I.M., Zlesov, V.V., JETP 35, 363 (1981).Google Scholar
7.Ekimov, A.I., Owushenko, A.A., JETP 34, 363 (1981).Google Scholar
8.Petrova-Koch, V., Fischer, T., Sheglov, K., Koch, F., F-CS, Chicago, 1995Google Scholar
9.Fischer, T., Doctoral thesis, TU Munich, 1996.Google Scholar
10.Rückschloss, M., Landkammer, B., Ambacher, O., and Veprek, S., Mat. Res. Soc. Symp. Proc. Vol. 283, 65 (1993).Google Scholar
11.Kanemitsu, Y., Phys. Rev. B 48, 4883 (1993).Google Scholar
12.Dittrich, Th., Schuster, T., Petrova-Koch, V., Porteanu, H., Hechtl, E., Koch, F., to be submitted to J. Appl. Phys.Google Scholar