Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:39:47.119Z Has data issue: false hasContentIssue false

Improvement and Use of Empirical Estimates of 29Si Chemical Shifts in Zeolites

Published online by Cambridge University Press:  28 February 2011

J. M. Newsam
Affiliation:
Exxon Research and Engineering Company, Route 22 East, Annandale, NJ 08801
M. T. Melchior
Affiliation:
Exxon Research and Engineering Company, Route 22 East, Annandale, NJ 08801
R. A. BEYERLEIN
Affiliation:
Exxon Research and Engineering Company, Route 22 East, Annandale, NJ 08801
Get access

Abstract

29Si chemical shifts, δ, are for aluminosilicate zeolites expressed as δSi-4Al (which can be estimated from the T-O-T angles observed crystallographically) plus terms involving b1 and b2, the quantitative influences of first and second neighbor aluminum atoms. The former, b1, is assumed to be the sum of a fixed electrostatic component, α, and a framework-specific angular term, β(0 < β < 0.9 ppm), that reflects the generally smaller Si-O-Al angles compared to Si-O-Si. The compositional dependence of δ is approximated by an equal influence, b2, per added second neighbor aluminum atom, the concentration of which is assumed to vary linearly with composition. Values of δS-nAl; n=0-3 for representative L (LTL-framework) and omega (MAZ) zeolites calculated on this basis agree well with those observed. Applying this description of the compositional dependence to as-synthesized and dealuminated CSZ-1 zeolites enables the measurement of framework aluminum contents in this four T-site case.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Newsam, J. M., J. Phys. Chem. 89, 20022005 (1985).Google Scholar
2. Smith, J. V. and Blackwell, C. S., Nature 303, 223225 (1983).CrossRefGoogle Scholar
3. Thomas, J. M., Klinowski, J., Ramdas, S., Hunter, B. K. and Tennakoon, D. T. B., Chem. Phys. Lett., 102, 158162 (1983).CrossRefGoogle Scholar
4. Ramdas, S. and Klinowski, J., Nature, 308 (1984) 521523.CrossRefGoogle Scholar
5. Engelhardt, G. and Radeglia, R., Chem. Phys. Lett., 108, 271274 (1984).CrossRefGoogle Scholar
6. Radeglia, R. and Engelhardt, G., Chem. Phys. Lett., 114, 2830 (1985).Google Scholar
7. Newsam, J. M., J. Phys. Chem. 91, 12591262 (1987).CrossRefGoogle Scholar
8. Melchior, M. T. in Intrazeolite Chemistry, edited by Stucky, G. D. and Dwyer, F. G. (ACS Symp. Ser. 218, American Chemical Society Washington DC 1983) pp. 243265.CrossRefGoogle Scholar
9. Aldridge, L. P., Meinhold, R. H. and Bibby, D. M. poster presented at 7th. Int. Zeolite Conf., Tokyo Japan, August 1986 and private communication 1987.Google Scholar
10. Treacy, M. M. J., Newsam, J. M., Beyerlein, R. A., Leonowicz, M. E. and Vaughan, D. E. W., J. Chem. Soc. Chem. Comm., 1986 1211–1214.CrossRefGoogle Scholar
11. Beyerlein, R. A., Newsam, J. M., Melchior, M. T. and Malone, H., J. Phys. Chem., accepted for publication (1987).Google Scholar
12. see, e.g., Geisinger, K. L., Gibbs, G. V. and Navrotsky, A., Phys. Chem. Minerals, 11, 266283 (1985).CrossRefGoogle Scholar
13. Newsam, J. M., Jacobson, A. J. and Vaughan, D. E. W., J. Phys. Chem. 90, 68586864 (1986).CrossRefGoogle Scholar
14. Loewenstein, W., Amer. Mineral., 39, 9296 (1954).Google Scholar
15. Newsam, J. M., J. Chem. Soc. Chem. Comm., 1987, 123–124.CrossRefGoogle Scholar
16. Newsam, J. M., Mater. Res. Bull., 21, 661672 (1986).CrossRefGoogle Scholar
17. Newsam, J. M., presented at ACS National Meeting, New Orleans LA, September 1987 and in preparation 1987.Google Scholar
18. Newsam, J. M., Melchior, M. T. and Malone, H., in “Proc. Symp. New Developments in Heterogeneous Oxide Catalysts, Including New Microporous Materials” Eds. Poeppelmeier, K. R. and Wilson, S. T., Solid State Ionics in press (1987)Google Scholar
19. Fyfe, C. A., Gobbi, G. C., Kennedy, G. J., DeSchutter, C. T., Murphy, W. J., Ozubko, R. S. and Slack, D. A., Chem. Lett., 1984, 163–166.CrossRefGoogle Scholar
20. Jarman, R. H., Jacobson, A. J. and Melchior, M. T., J. Phys. Chem., 88 57485752 (1984).Google Scholar
21. Fyfe, C. A., Gobbi, G. C., Kennedy, G. J., Graham, J. D., Ozubko, R. S., Murphy, W. J., Bothner-by, A., Dadok, J. and Chesnick, A. S., Zeolites, 5, 179183 (1985).CrossRefGoogle Scholar
22. Klinowski, J. and Anderson, M. W., J. Chem. Soc. Faraday Trans. I, 82, 569584 (1986).CrossRefGoogle Scholar
23. Rinaldi, R., Pluth, J. J. and Smith, J. V., Acta Cryst., B31, 16031608 (1975).CrossRefGoogle Scholar
24. Galli, E., Cryst. Struct. Comm., 3, 334339 (1974).Google Scholar
25. Thomas, J. M., Klinowski, J., Ramdas, S., Hunter, B. K. and Tennakoon, D. T. B., Chem. Lett. 1983, 1547–1550.Google Scholar
26. Klinowski, J., Anderson, M. W. and Thomas, J. M., J. Chem. Soc. Chem. Comm. 1983, 525–526.CrossRefGoogle Scholar