Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:44:33.591Z Has data issue: false hasContentIssue false

Improved Performance and Reliability in Aggressively-Scaled NMOS and PMOS FETs: i) Monolayer Interface Nitridation, and ii) Replacement of Stacked Oxide/Nitride Dielectrics With Optimized Oxide/Oxynitride Stacks

Published online by Cambridge University Press:  10 February 2011

Hanyang Yang
Affiliation:
Department of Electrical and Computer Engineering Physics, North Carolina State University, Raleigh, NC 27695-8202
Hiro Niimi
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-8202
Gerry Lucovsky
Affiliation:
Department of Electrical and Computer Engineering Physics, North Carolina State University, Raleigh, NC 27695-8202 Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-8202 Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
Get access

Abstract

This paper demonstrates optimized performance and reliability in ‘second generation’ gate dielectrics which include monolayer nitrided Si-SiO2 interfaces, and deposited silicon oxynitride alloy gate dielectrics. Devices with oxynitride alloy gate dielectrics with an approximate 2:1 ratio of N:O display reduced tunneling current, improved hole mobilities and improved reliability compared to devices with Si-nitride gate dielectrics and the same nitrided interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.The National Roadmap for Semiconductor Technology (SIA, Santa Clara, CA, 1997).Google Scholar
2.Song, S.C. et al. , IEDM Tech. Dig. 373 (1998).Google Scholar
3.Tseng, H-S. et al. , IEDM Tech. Dig. 973 (1998).Google Scholar
4.Parker, C.R., Lucovsky, G. and Hauser, J.R., IEEE Electron Device Letters, 19, 106 (1998).Google Scholar
5.Wu, Y. and Lucovsky, G., Elec. Dev. Lett. EDL 19, 367 (1998).Google Scholar
6.Wilk, G. and Wallace, W.A.Appl. Phys. Lett. 74, 2854 (1999).Google Scholar
7.Wolfe, D.M. and Lucovsky, G., MRS Symp. Proc. for Symposium R (Spring 1999), in press.Google Scholar
8.Chatterjee, A. et al. , IEDM Tech. Dig. 779 (1998).Google Scholar
9.Luan, H.F. et al. , IEDM Tech. Dig. 609 (1998).Google Scholar
10.Lucovsky, G., Wu, Y., Niimi, H., Misra, V. and Phillips, J.C., Appl. Phys. Lett. 74, 2005 (1999).Google Scholar
11.Misra, V., Wang, Z., Wu, Y., Niimi, H., Lucovsky, G., Wortman, J.J. and Hauser, J.R., J. Vac. Sci. Technol. B 17, 1836 (1999).Google Scholar
12.Niimi, H., Yang, H.Y. and Lucovsky, G., in Characterization and Metrology for ULSI Technology: 1998 International Conference, ed. by Seiler, D.G., Diebold, A.C., Bullis, W.M., Shaffner, T.J., McDonald, R. and Walters, E.J. (The American Institute of Physics, Woodbury, NY 1998), p. 273.Google Scholar
13.Ma, Y., Yasuda, T., and Lucovsky, G., J. Vac. Sci. Technol. A 11, 952 (1993); Y. Ma, T. Yasuda, S. Habermehl and G. Lucovsky, J. Vac. Sci. Technol. B 11, 1533 (1993); Y. Ma, and G. Lucovsky, J. Vac. Sci. Technol. B 12, 2504 (1994).Google Scholar
14.Hattangady, S.V., Niimi, H. and Lucovsky, G., J. Vac. Sci. Technol. A 14, 3017 (1996).Google Scholar
15.Yang, H.Y., Niimi, H. and Lucovsky, G., J. Appl. Phys. 83, 2327 (1998).Google Scholar
16.Vogel, E.M., Ahmed, K.Z., Hornung, B.Henson, W.K., McLarty, P.K., Lucovsky, G., Hauser, J.R. and Wortman, J.J., IEEE Trans. Elec. Dev. 45, 1350 (1998).Google Scholar
17.Lucovsky, G. and Phillips, J.C., J. Non-Cryst. Solids 227, 1221 (1998), and references therein.Google Scholar
18.Gusev, E.P., Lu, H.-C., Garfunkel, E.L., Gustafson, T. and Green, M.L., IBM J. Res. and Develop. 43, 265 (1999).Google Scholar
19.Lucovsky, G., IBM J. Res. and Develop. 43, 301 (1999).Google Scholar