Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T14:45:27.500Z Has data issue: false hasContentIssue false

Improved Hole Collection in Polymer Heterojunction Solar Cells with DNA/Pt-DNA Layers

Published online by Cambridge University Press:  16 August 2011

Ali Bilge Guvenc
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Shirui Guo
Affiliation:
Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A.
Cengiz S. Ozkan
Affiliation:
Department of Mechanical Engineering, University of California-Riverside, Riverside, CA, U.S.A. Materials Science and Engineering Program, University of California-Riverside, Riverside, CA, U.S.A.
Mihrimah Ozkan
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Get access

Abstract

In this study, we investigated the effects of DNA/Pt-DNA strands as hole collecting layers in polymer heterojunction solar cells based on ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al structure. We demonstrated that by introducing DNA or Pt-DNA layers between the polymer electrode (PEDOT:PSS) and the active layer (P3HT:PCBM), lead to an improvement in the hole collection efficiency and power conversion efficiency and the absorbance spectra of the devices indicate that Pt particles work as surface plasmons and increase the absorbance of the devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wohrle, D. and Meissner, D., Advanced Materials 3 (3), 129 (1991).Google Scholar
2. Kim, J. Y., Kim, S. H., Lee, H. H., Lee, K., Ma, W. L., Gong, X. and Heeger, A. J., Adv Mater 18 (5), 572 (2006).Google Scholar
3. Brabec, C. J., Hauch, J. A., Schilinsky, P. and Waldauf, C., MRS Bulletin 30 (1), 50 (2005).Google Scholar
4. Haugeneder, A., Neges, M., Kallinger, C., Spirkl, W., Lemmer, U., Feldmann, J., Scherf, U., Harth, E., Gugel, A. and Mullen, K., Phys Rev B 59 (23), 15346 (1999).Google Scholar
5. Morana, M., Wegscheider, M., Bonanni, A., Kopidakis, N., Shaheen, S., Scharber, M., Zhu, Z., Waller, D., Gaudiana, R. and Brabec, C., Adv Funct Mater 18 (12), 1757 (2008).Google Scholar
6. Kannan, B., Castelino, K. and Majumdar, A., Nano Lett 3 (12), 1729 (2003).Google Scholar
7. Kymakis, E., Kornilios, N. and Koudoumas, E., J Phys D Appl Phys 41 (16), 165110 (2008).Google Scholar
8. Huynh, W. U., Dittmer, J. J. and Alivisatos, A. P., Science 295 (5564), 2425 (2002).Google Scholar
9. Arici, E., Sariciftci, N. S. and Meissner, D., Adv Funct Mater 13 (2), 165 (2003).Google Scholar
10. Xin, H., Kim, F. S. and Jenekhe, S. A., J Am Chem Soc 130 (16), 5424 (2008).Google Scholar
11. Kolachure, V. and Jin, M. H. C., presented at the Photovoltaic Specialists Conference, 2008. PVSC ’08. 33rd IEEE, (2008).Google Scholar
12. Steckl, A. J., Nat Photonics 1 (1), 3 (2007).Google Scholar
13. Schaeffer, J. K., Fonseca, L. R. C., Samavedam, S. B., Liang, Y., Tobin, P. J. and White, B. E., Appl Phys Lett 85 (10), 1826 (2004).Google Scholar
14. Kim, Y., Choi, D., Moon, B., Oh, E., Lim, H., Kwon, S. and Ha, C. S., Adv Eng Mater 7 (11), 1023 (2005).Google Scholar
15. Hashimoto, Y. and Hamagaki, M., Electr Eng Jpn 154 (4), 1 (2006).Google Scholar
16. Brabec, C. J., Shaheen, S. E., Winder, C., Sariciftci, N. S. and Denk, P., Appl Phys Lett 80 (7), 1288 (2002).Google Scholar
17. Wang, X., Pandey, R. R., Singh, K. V., Andavan, G. T. S., Tsai, C., Lake, R., Ozkan, M. and Ozkan, C. S., Nanotechnology 17 (5), 1177 (2006).Google Scholar
18. Chaudhary, S., Lu, H. W., Muller, A. M., Bardeen, C. J. and Ozkan, M., Nano Lett 7 (7), 1973 (2007).Google Scholar
19. Chaudhary, S., Kim, J. H., Singh, K. V. and Ozkan, M., Nano Lett 4 (12), 2415 (2004).Google Scholar
20. Kwon, Y. W., Lee, C. H., Choi, D. H. and Jin, J. I., J Mater Chem 19 (10), 1353 (2009).Google Scholar
21. Benedetti, M., Ducani, C., Migoni, D., Antonucci, D., Vecchio, V. M., Romano, A., Verri, T. and Fanizzi, F. P., Possible Incorporation of Free N7-Platinated Guanines in DNA by DNA Polymerases, Relevance for the Cisplatin Mechanism of Action. (Humana Press Inc, 2009).Google Scholar
22. Kang, C. Y., Chao, C. H., Shiu, S. C., Chou, L. J., Chang, M. T., Lin, G. R. and Lin, C. F., J Appl Phys 102 (7), 073508 (2007).Google Scholar
23. Dennler, G. and Sariciftci, N. S., Proceedings of the IEEE 93 (8), 1429 (2005).Google Scholar
24. Miller, A. J., Hatton, R. A. and Silva, S. R. P., Appl Phys Lett 89 (13), 133117 (2006).Google Scholar