Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T05:07:36.365Z Has data issue: false hasContentIssue false

Improved Electron Injection in Organic Light Emitting Devices by Applying Thin Insulating Layers

Published online by Cambridge University Press:  10 February 2011

R. Pairleitner
Affiliation:
Institut für Festkörperphysik, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria
S. Tasch
Affiliation:
Institut für Festkörperphysik, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria
G. Leising
Affiliation:
Institut für Festkörperphysik, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria
U. Scherf
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128, Germany
Get access

Abstract

We present the fabrication and characterization of organic light emitting devices (OLEDs) using thin insulating layers for improved electron injection. The OLEDs are constructed with an ITO anode and an aluminum cathode. For the active layer we use either ladder-type Polyparaphenylene (m-LPPP) or Parahexaphenyl (PHP). A thin film of an insulating material is applied between the active layer and the cathode, in order to achieve a better tunnel injection due to a higher electric field at the interface. We compared different insulating materials with various thickness. The best results are obtained by using a LiF-layer with a thickness between 10 Å and 15 Å. Thereby the onset voltage decreases and the current density in the device increases significantly.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burn, P. L., Kraft, A., Holmes, A. B., Nature 347, 539 (1990).Google Scholar
2. Ohmori, Y., Uchida, M., Muro, K., Yoshino, K., Jpn. Appl. Phys. 30, L1941 (1991)Google Scholar
3. Grem, G., Leditzky, G., Ullrich, B., Leising, G., Adv. Mater. 4, 36 (1992)Google Scholar
4. Kim, H. H., Miller, T. M., Westerwick, E. H., Kim, Y. O., Kwock, E. W., Morris, M. D. and Cerullo, M., J. of Lightwave Techn. 12, 2107 (1994).Google Scholar
5. Hung, L. S., Tang, C. W. and Mason, G. M., Appl. Phys. Lett. 70, 152 (1997).Google Scholar
6. Kim, Y.E., Park, H. and Kim, J.-J., Appl. Phys. Lett. 69, 680 (1996).Google Scholar
7. Marks, R. N, Biscarini, F., Virgili, T., Muccini, M., Zamboni, R. and Taliani, C., Phil. Trans. R. Soc. Lond. A 355, 763 (1997).Google Scholar
8. Tang, H., Li, F. and Shinar, J., Appl. Phys. Lett. 71, 2560 (1997).Google Scholar
9. Jabbour, G. E., Kawabe, Y., Shaheen, S. E., Wang, J. F., Morrell, M. M., Kippelen, B. and Peyghambarian, N., Appl. Phys. Lett. 71, 1762 (1997).Google Scholar
10. Athouel, L., Froyer, G., Riou, M. T., Synth. Met. 57, 4734 (1993).Google Scholar
11. Ambrosch-Draxl, C., Majewski, J. A., Vogl, P., Leising, G., Phys. Rev. B 51, 9668 (1995).Google Scholar
12. Niko, A., Meghdadi, F., Ambrosch-Draxl, C., Vogl, P., Leising, G., Synth. Met. 76, 177 (1996).Google Scholar
13. Meghdadi, F., Leising, G., Fischer, W., Stelzer, F., Synth. Met. 76, 113 (1996).Google Scholar
14. Tasch, S., Niko, A., Leising, G., Scherf, U., Appl. Phys. Lett. 68, 1090 (1996).Google Scholar
15. Resel, R., Koch, N., Meghdadi, F., Leising, G., Unzog, W., Reichmann, K., Thin Solid Films 305, 232 (1997).Google Scholar
16. Drexhage, K. H., J. of Luminescence 1, 2, 693 (1970).Google Scholar
17. Choong, V.-E., Park, Y. and Gao, Y., Wehrmeister, T. and Muillen, K., Hsieh, B. R., Tang, C. W., J. Vac. Sci. Technol. A 15(3), 1745 (1997)Google Scholar
18. Becker, H., Bums, S. E. and Friend, R.H., Phys. Rev. B 56, 1893 (1997).Google Scholar