Published online by Cambridge University Press: 26 February 2011
The development of a hydrogen infrastructure has been identified as a key barrier to implementing hydrogen as for a future transportation fuel. Several recent studies of hydrogen infrastructure have assessed near-term and long-term alternatives for hydrogen supply [1-2]. In this paper, we discuss how advances in material science related to hydrogen storage could change how a future hydrogen infrastructure is designed. Using a simplified engineering/economic model for hydrogen infrastructure design and cost, we explore some potential impacts of advances in storage materials, in terms of system design, cost, energy use, and greenhouse gas emissions. We find that the characteristics of hydrogen storage play a major role in the design, cost, energy use, and CO2 emissions of hydrogen supply infrastructure.