Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T22:12:45.634Z Has data issue: false hasContentIssue false

Implantation-Induced Voids for Thermally Stable Electrical Isolation in GaAs

Published online by Cambridge University Press:  26 February 2011

K. Y. Ko
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York 14650–2132.
Samuel Chen
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York 14650–2132.
G. Braunstein
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York 14650–2132.
Get access

Abstract

Microscopic voids, formed from the condensation of supersaturated vacancy point defects, were recently discovered in implanted and annealed GaAs. These defects have been shown to suppress carrier concentrations. Since voids are formed only at relatively high temperatures (> 650 °C), the possibility exists that voids can be used for thermally stable implant isolation. In this paper, we report on the formation of highly resistive layers in GaAs, created by Al+ implantation and annealing in the 700–900 °C range. In samples containing voids, their sheet resistivities increased by about six orders of magnitude from the as-grown value. Formation of these thermally stable, high resistivity regions is different from the conventional H or O implant isolation techniques, which use lattice damage to create the isolation characteristics. However, since lattice damage is annealed out between 400–700 °C, this type of isolation becomes ineffective at high processing temperatures. By contrast, voids are stable at high processing temperatures, and potential advantages of using such defects for device isolation in GaAs are pointed out.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Morgan, D. V. and Eisen, F. H., Gallium Arsenide, Wiley and Son, New York, 1985, Ch. 5.Google Scholar
2) Pearton, S. J., Poate, J. M., Sette, F., Gibson, J. M., Jacobson, D. C. and William, J. S., Nucl. Instrum. Methods, B19/20, 369 (1987).Google Scholar
3) Pearton, S. J., Mater. Sci. Rep. 4, 315 (1990).Google Scholar
4) Favennec, P. N., J. AppL. Phys. 47, 2532 (1976).Google Scholar
5) D'Avanzo, D. C., IEEE Trans. Electron, Devices ED–29, 1051 (1982).Google Scholar
6) Nelson, D. A., Shen, Y. D. and Welch, B. M., J. Electrochem. Soc. 134, 2549 (1987).Google Scholar
7) Chen, S., Lee, S. -T., Braunstein, G. and Tan, T. Y., Appl. Phys. Lett. 55, 1194 (1989).Google Scholar
8) Chen, S., Lee, S. -T., Braunstein, G., Ko, K. Y., Zheng, L. R. and Tan, T. Y., Jpn. J. Appl. Phys. 29, L1050 (1990).Google Scholar
9) Lee, S. -T., Chen, S., Braunstein, G., Ko, K. Y., Ott, M. L. and Tan, T. Y., Appl. Phys. Lett. 57, 389 (1990).Google Scholar
10) Chen, S., Lee, S. -T., Braunstein, G., Ko, K. Y. and Tan, T. Y., J. Appl. Phys. 70, 656 (1991).CrossRefGoogle Scholar
11) Marioton, B. P. R., Tan, T. Y. and Gösele, U., Appl. Phys. Lett. 54, 840 (1989).CrossRefGoogle Scholar
12) Dietrich, H. B., SPIE Proc. 530, 30 (1985).Google Scholar
13) Xiong, F., Tombrello, T. A., Wang, H., Chen, T. R., Chen, H. Z., Morkoç, H. and Yariv, A., Appl. Phys, Lett. 54, 730 (1989).Google Scholar