Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T23:37:13.440Z Has data issue: false hasContentIssue false

Implant isolation of ZnO epitaxial layers

Published online by Cambridge University Press:  11 February 2011

S. O. Kucheyev
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550
C. Jagadish
Affiliation:
Department of Electronic Materials Engineering, RSPhysSE, The Australian National University, Canberra, ACT 0200, Australia
J. S. Williams
Affiliation:
Department of Electronic Materials Engineering, RSPhysSE, The Australian National University, Canberra, ACT 0200, Australia
P. N. K. Deenapanray
Affiliation:
Department of Electronic Materials Engineering, RSPhysSE, The Australian National University, Canberra, ACT 0200, Australia
Mitsuaki Yano
Affiliation:
New Materials Research Center and Bio-Venture Center, Osaka Institute of Technology, Asahi-ku, Ohmiya, Osaka 535–8585, Japan
Kazuto Koike
Affiliation:
New Materials Research Center and Bio-Venture Center, Osaka Institute of Technology, Asahi-ku, Ohmiya, Osaka 535–8585, Japan
Shigehiko Sasa
Affiliation:
New Materials Research Center and Bio-Venture Center, Osaka Institute of Technology, Asahi-ku, Ohmiya, Osaka 535–8585, Japan
Masataka Inoue
Affiliation:
New Materials Research Center and Bio-Venture Center, Osaka Institute of Technology, Asahi-ku, Ohmiya, Osaka 535–8585, Japan
Ken-ichi Ogata
Affiliation:
Bio-Venture Center, Osaka Institute of Technology, Asahi-ku, Ohmiya, Osaka 535–8585, Japan
Get access

Abstract

The formation of highly resistive films of single-crystal ZnO as a result of irradiation with MeV Li, O, and Si ions is demonstrated. Results show that the ion doses necessary for electrical isolation close-to-inversely depend on the number of ion-beam-generated atomic displacements. Results show that an increase in the dose of 2 MeV O ions (up to ∼ 2 orders of magnitude above the threshold isolation dose) and irradiation temperature (up to 350 °C) has a relatively minor effect on the thermal stability of electrical isolation, which is limited to temperatures of ∼ 300 — 400 °C. For the case of multiple-energy implantation with keV Cr, Fe, or Ni ions, the evolution of sheet resistance with annealing temperature is consistent with defect-induced isolation, with a relatively minor effect of Cr, Fe, or Ni impurities on the thermal stability of isolation. Based on these results, the mechanism for electrical isolation in ZnO by ion bombardment is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] See, for example, reviews by Nause, J. E., III-Vs Rev. 12, 28 (1999);Google Scholar
Chen, Y. et al., Mater. Sci. Eng. B 75, 190 (2000);Google Scholar
Look, D. C., Mater. Sci. Eng. B 80, 383 (2001).Google Scholar
[2] See, for example, a review by Pearton, S. J., Mater. Sci. Rep. 4, 313 (1990).Google Scholar
[3] Meese, J. M. and Locker, D. R., Solid State Comm. 11, 1547 (1972).Google Scholar
[4] Thomas, B. W. and Walsh, D., J. Phys. D: Appl. Phys. 6, 612 (1973).Google Scholar
[5] Auret, F. D., Goodman, S. A., Hayes, M., Legodi, M. J., van Laarhoven, H. A., and Look, D. C., Appl. Phys. Lett. 79, 3074 (2001).Google Scholar
[6] Look, D. C., Reynolds, D. C., Hemsky, J. W., Jones, R. L., and Sizelove, J. R., Appl. Phys. Lett. 75, 811 (1999).Google Scholar
[7] Koike, K., Tanite, T., Sasa, S., Inoue, M., and Yano, M., Mat. Res. Soc. Symp. Proc. 692, H11.9 (2002).Google Scholar
[8] See, for example, de Souza, J. P., Danilov, I., and Boudinov, H., Appl. Phys. Lett. 84, 4757 (1998);Google Scholar
Lippen, T. v., Boudinov, H., Tan, H. H., and Jagadish, C., J. Appl. Phys. 80, 264 (2002).Google Scholar
[9] Nikitenko, V. A., Zhurnal Prikladnoi Spectroskopii 57, 367 (1992).Google Scholar
[10] Naguib, H. M. and Kelly, R., Radiat. Eff. 25, 1 (1975).Google Scholar
[11] White, C. W., Boatner, L. A., Sklad, P. S., McHargue, C. J., Pennycook, S. J., Aziz, M. J., Farlow, G. C., and Rankin, J., Mat. Res. Soc. Symp. Proc. 74, 357 (1987).Google Scholar
[12] Sonder, E., Zuhr, R. A., and Valiga, R. E., J. Appl. Phys. 64, 1140 (1988).Google Scholar
[13] Kucheyev, S. O., Boudinov, H., Williams, J. S., Jagadish, C., and Li, G., J. Appl. Phys. 91, 4117 (2002).Google Scholar
[14] See, for example, a recent review by Kucheyev, S. O., Williams, J. S., and Pearton, S. J., Mater. Sci. Eng., R 33, 51 (2001).Google Scholar
[15] Cao, X. A., Pearton, S. J., Dang, G. T., Zhang, A. P., Ren, F., Wilson, R. G., and Van Hove, J. M., J. Appl. Phys. 87, 1091 (2000).Google Scholar