Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-06T05:14:03.223Z Has data issue: false hasContentIssue false

Impact of the High-Temperature Process Steps on the HfAlO Interpoly Dielectric Stacks for Nonvolatile Memory Applications

Published online by Cambridge University Press:  01 February 2011

Daniel Ruiz Aguado
Affiliation:
[email protected], IMEC, PT/Memory, Kapeldreef 75, Leuven, 3001, Belgium, +3216281211, +3216229400
Bogdan Govoreanu
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, 3001, Belgium
Paola Favia
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, 3001, Belgium
Kristin De Meyer
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, 3001, Belgium
Jan Van Houdt
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, 3001, Belgium
Get access

Abstract

This work reports on the performance of different Hafmiun aluminate (HfAlOx)-based interpoly dielectrics (IPD) for future sub-45nm nonvolatile memory (NVM) technologies. The impact of the thermal budget during the fabrication process is studied. The good retention and large operating window shown by this material, can be compromised by a high temperature activation anneal (AA) after the gate deposition. The AA step may induce phase segregation of the HfAlOx and outdiffusion of the Hf (Al) towards the floating gate/IPD and IPD/gate interfaces and subsequent formation of Hf (Al) silicates. These findings are supported by the low field leakage analysis, which shows large device to device dispersions. However, the effect of the spike anneal can be minimized if the HfAlOx layer is crystallized prior to the AA. Devices with polysilicon or TiN gate are compared in terms of memory performance and reliability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Govoreanu, B. Brunco, D. P. Houdt, J. Van, Solid-St. Electr., 49(11): 18411847, 2005.Google Scholar
[2]. Duuren, M. van, Schaijk, R. van, Slotboom, M. Tello, P. Goarin, P. Akil, N. Neuilly, F. Rittersma, Z. and Huerta, A. Proc. NVSM Workshop, pp. 4849, 2006.Google Scholar
[3]. Wellekens, D. Blomme, P. Govoreanu, B. Vos, J. De, Haspeslagh, L. Houdt, J. Van, Brunco, D. P. and Zanden, K. van der, Proc. ESSDERC, pp. 238241, 2006.Google Scholar
[4]. Dictus, D. Shamiryan, D. Paraschiv, V. and Boullart, W. Gendt, S. De and Vanhaelemeersch, S. J. Vac. Sci. Technol. B 24(5): 1071–1023, 2006.Google Scholar
[5]. Zhu, W. J. Tamagawa, T. Gibson, M. Furukawa, T. and Ma, T. P. IEEE El. Dev. Lett, 23(11): 649651, 2002.Google Scholar
[6]. Govoreanu, B. Wellekens, D. Vos, J. De, Haspeslagh, L. Houdt, J. Van, IEDM Tech. Dig, pp. 479482, 2006.Google Scholar
[7]. Yu, H. Y. Wu, N. Li, M. F. Zhu, C. and Cho, B. J. Appl. Phys. Lett., 81(19): 36183620, 2002.Google Scholar
[8]. Afanas, V. V.'ev, Stesmans, A. and Tsaib, W. Appl. Phys. Lett., 82(2): 245247, 2003.Google Scholar