Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:54:40.407Z Has data issue: false hasContentIssue false

Impact of Device Variability and Circuit Phase Shift in Synchronized Spin Torque Oscillators

Published online by Cambridge University Press:  21 March 2011

Johan Persson
Affiliation:
Microelectronics and Applied Physics, Information and Communication Technology, Electrum 229, Stockholm, 16440, Sweden
Yan Zhou
Affiliation:
Microelectronics and Applied Physics, Information and Communication Technology, Electrum 229, Stockholm, 16440, Sweden
Johan Akerman
Affiliation:
Microelectronics and Applied Physics, Information and Communication Technology, Electrum 229, Stockholm, 16440, Sweden
Get access

Abstract

Current-induced magnetization dynamics in a system composed of two electrically coupled spin torque oscillators (STOs) is examined. The dynamics of the STOs is modeled by the Landau–Lifshitz–Gilbert equations modified with a Slonczewski spin-transfer torque term. To study the impact of realistic process variations on STO synchronization we let the two STOs have different in-plane anisotropy fields (Hk). The simulation also provides for a time delay τ. We construct a phase diagram of the STO synchronization as a function of Hk and direct current (Idc) at different τ. The phase diagram turns out to be quite rich with different types of synchronized precession modes. While the synchronized state is originally very sensitive to STO process variations and can only sustain up to 4% Hk variation, the addition of a small time delay dramatically improves its robustness and allows as much as 145% Hk variation in the entire out-of-plane precession regime. It is also shown that the two STOs can not only be locked in frequency, but also in phase at a given τ and the phase difference between the two STOs can be tuned by varying the dc current.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Berger, L., Phys. Rev. B 54, 9353 (1996).Google Scholar
2. Slonczewski, J., J. Magn. Magn. Mater. 159, L1 (1996).Google Scholar
3. Slonczewski, J., J. Magn. Magn. Mater. 159, L261 (1999).Google Scholar
4. See, for example, Brataas, A., Nazarov, Yu. V., and Bauer, G. E. W., Eur, Phys. J. B 22, 99 (2001); A. Shpiro, P. M. Levy, and S. Zhang, Phys. Rev. B 67, 104430 (2003); M. D. Stiles and A. Zangwill, Phys. Rev. B 66, 014407 (2002); X. Waintal, E. B. Myers, P. W. Brouwer, and D. C. Ralph, Phys. Rev. B 62, 12317 (2000); Y. B. Bazaliy, B. A. Jones, and S. C. Zhang, Phys. Rev. B 57, R3213 (1998).Google Scholar
5. Grollier, J., Cros, V., Hamzic, A., George, J. M., Jaffres, H., Fert, A., Faini, G., Youssef, J. Ben, and Legall, H., Appl. Phys. Lett. 78, 3663 (2001).Google Scholar
6. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B., and Ralph, D. C., Phys. Rev. Lett. 84, 3149 (2000).Google Scholar
7. Tsoi, M., Sun, J. Z., Rooks, M. J., Koch, R. H., and Parkin, S. S. P., Phys. Rev. B 69, 100406(R) (2004).Google Scholar
8. Engel, B. N., Åkerman, J., Butcher, B., Dave, R. W., DeHerrera, M., Durlam, M., Grynkewich, G., Janesky, J., Pietambaram, S. V., Rizzo, N. D., Slaughter, J. M., Smith, K., Sun, J. J., and Tehrani, S., IEEE Trans. Magn. 41, 132 (2005).Google Scholar
9. Sun, J. Z., Phys. Rev. B 62, 570 (2000).Google Scholar
10. Li, Z. and Zhang, S., Phys. Rev. B 68, 024404 (2003).Google Scholar
11. Krivorotov, I. N., Emley, N. C., Sankey, J. C., Kiselev, S. I., Ralph, D. C. and Buhrman, R. A., Science 307, 228 (2005).Google Scholar
13. Kaka, S., Pufall, M. R., Rippard, W. H., Silval, T. J., Russek, S. E. and Katine, J. A., Nature 437, 389 (2005).Google Scholar
14. Mancoff, F. B., Rizzo, N. D., Engel, B. N. and Tehrani, S., Nature 437, 393 (2005).Google Scholar
15. Grollier, J., Cros, V., and Fert, A., Phys. Rev. B 73, 060409 (2006).Google Scholar
16. Kiselev, S. I., Sankey, J. C., Krivorotov, I. N., Emley, N. C., Schuoelkopf, R. J., Buhrman, R. A., and Ralph, D. C., Nature 425, 380 (2003).Google Scholar
17. Xiao, J., Zangwill, A., and Stiles, M. D., Phys. Rev. B 72, 014446 (2005);Google Scholar
18. Xi, H., Lin, Z., and Wilomowski, A. M., J. Magn. Magn. Mater. 296, 32 (2006).Google Scholar
19. Russek, S. E., Kaka, S., Rippard, W. H., Pufall, M. R., and Silva, T. J., Phys. Rev. B 71, 104425 (2005).Google Scholar
20. Zhou, Y., Persson, J., and Åkerman, J., to appear in J. Appl. Phys. 101, (2007).Google Scholar