Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T06:56:02.494Z Has data issue: false hasContentIssue false

The Impact of Annealing on the Corrosion Mechanism of Copper Films

Published online by Cambridge University Press:  15 February 2011

D. Ernur
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium K. U. Leuven, ESAT, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
L. Carbonell
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
K. Maex
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium K. U. Leuven, ESAT, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
Get access

Abstract

We investigated the corrosion mechanism of copper films. Based on our results regarding the morphology of the Cu surface, examined by scanning electron microscopy (SEM) and focused ion beam (FIB), it is shown that with an inorganic acid-based model CMP solution corrosion is initiated at the grain boundaries. In contrast, for an organic acid-based solution, corrosion starts with no preferential location. Some of the samples received an additional anneal after the CMP process was completed to monitor the influence of annealing on the corrosion mechanism by the acid solutions. Presence of facets especially after treatment with the inorganic acid-based model CMP solution suggests that a different mechanism governs the initiation and the evolution of corrosion. Desorption of the impurities during annealing, which is monitored by Atmospheric Pressure Ionized Mass Spectrometry (APIMS) revealed desorbing species from the copper films that could originate from the additives used in the Cu plating bath.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Kondo, S., Sakuma, N., Homma, Y. and Ohashi, N., Jpn. J. Appl. Phys. 39 6216 (2000).Google Scholar
2) Homma, Y., Kondo, S., Sakuma, N., Hinode, K., Noguchi, J., Ogashi, N., Yamaguchi, H. and Owada, N., J. Electrochem. Soc. 147 (3) 1193 (2000).Google Scholar
3) Ernur, D., Kondo, S. and Maex, K., Jpn. J. Appl. Phys, 41 (12) (2002)Google Scholar
4) Ernur, D., Schuhmacher, J., Terzieva, V., Shamiryan, D. and Maex, K., Advanced Metallization Conference, San Diego-U.S.A., 2002 Google Scholar
5) Beyer, G. P., Kitabjian, P., Brongersma, S. H., Proost, J., Bneder, H., Richard, E., Vervoort, I., hey, P., Zhang, P. and Maex, K., Conference Proceedings, ULSI XV, 167, (2000).Google Scholar
6) Chen, H. C., Yang, M. S., Wu, J. Y. and Lur, W., International Interconnect Technology Conference 1999, 65, (1999).Google Scholar
7) Smekalin, K. and Jiang, Q T., Mat. Res. Soc. Symp. Proc. 566, 143, (2000).Google Scholar
8) Carbonell, L., Vereecke, G., Elshocht, S. van, Caymax, M., Hove, M. van, Maex, K., and Mertens, P.W., Proceedings of the 203rd Electrochemical Society Meeting, Spring 2003 (Accepted)Google Scholar
9) Miller, A. E., Fischer, P. B., Feller, A. D., and Cadien, K. C.: Proceedings of the International Interconnect Technology Conference 143 (2001).Google Scholar
10) Morrison, S. R., The Chemical Physics of Surfaces, Plenum Press, New York, 1977.Google Scholar
11) Singh, B., Vook, R. W. and Kanabbe, E.A., J. Vac. Sci. Technol., 17(1), Jan./Feb. (1980)Google Scholar
12) Vlachos, D. G., Schmidt, L.D. and Aris, R., Phy. Rev. B 9 (9) 4896 (1993)Google Scholar
13) Leibsle, F. M., Haq, S., Frederick, B.G., Bowker, M. and Richarson, N. V., Surf. Sci., 343 L1175 (1995).Google Scholar
14)Wee, A. T. S., Guo, Y. P., Tan, K. C., Wang, H. Q., Leong, T. K. and Huan, C. H. A., Surface and Interface Analysis, 32 228 (2001).Google Scholar