Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:10:41.793Z Has data issue: false hasContentIssue false

Imidazole-Based Solvents and Membranes for CO2 Capture Applications

Published online by Cambridge University Press:  30 July 2014

Jason E. Bara
Affiliation:
University of Alabama, Department of Chemical & Biological Engineering, Tuscaloosa, AL 35487-0203 USA ION Engineering, Boulder, CO 80301 USA
Matthew S. Shannon
Affiliation:
University of Alabama, Department of Chemical & Biological Engineering, Tuscaloosa, AL 35487-0203 USA
W. Jeffrey Horne
Affiliation:
University of Alabama, Department of Chemical & Biological Engineering, Tuscaloosa, AL 35487-0203 USA
John W. Whitley
Affiliation:
University of Alabama, Department of Chemical & Biological Engineering, Tuscaloosa, AL 35487-0203 USA
Haining Liu
Affiliation:
University of Alabama, Department of Chemical & Biological Engineering, Tuscaloosa, AL 35487-0203 USA
David A. Wallace
Affiliation:
University of Alabama, Department of Chemical & Biological Engineering, Tuscaloosa, AL 35487-0203 USA
Heath Turner
Affiliation:
University of Alabama, Department of Chemical & Biological Engineering, Tuscaloosa, AL 35487-0203 USA
Sergey P. Verevkin
Affiliation:
Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, 18059 Rostock, Germany
Nathan Brown
Affiliation:
ION Engineering, Boulder, CO 80301 USA
Greg Staab
Affiliation:
ION Engineering, Boulder, CO 80301 USA
Rene Kupfer
Affiliation:
ION Engineering, Boulder, CO 80301 USA
Get access

Abstract

Imidazoles present a tunable, versatile and economical platform for the development of novel liquid solvents and polymer membranes for CO2 capture. An overview of our studies in this area is presented, with emphasis on characterization of structure-property relationships in imidazole-based materials through both experimental and computational studies. To this end, a growing library of systematically varied imidazole compounds has been synthesized using only commercial available starting materials and straightforward reactions. Using this library of compounds, we have sought to understand and develop predictive models for thermophysical properties relating to process design, including: density, viscosity, vapor pressure, pKa and CO2 absorption capacity. Furthermore, we have discovered that imidazoles are stable in the presence of SO2 and can form reversible 1:1 adducts, which can be beneficial as SO2 is typically present at ppm levels alongside CO2 in flue gas from coal-fired power plants.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rochelle, G. T., “Amine Scrubbing for CO2 Capture,” Science, vol. 325, pp. 16521654, Sep 2009.CrossRefGoogle ScholarPubMed
Tennyson, R. N. and Schaaf, R. P., “Guidelines can help choose proper process for gas-treating plants,” Oil & Gas Journal, vol. 75, pp. 7886, 1977.Google Scholar
Kidnay, A. J. and Parrish, W. R., Fundamentals of Natural Gas Processing. Boca Raton, FL: CRC Press: Taylor & Francis Group, 2006.CrossRefGoogle Scholar
NETL. (2013, 22 July 2013). DOE/NETL Advanced Carbon Dioxide Capture R&D Program: May 2013 Update . Available: http://www.netl.doe.gov/technologies/coalpower/ewr/pubs/CO2-Capture-Tech-Update-2013.pdf Google Scholar
Bucklin, R. W. and Schendel, R. L., “Physical Solvent Processes Can Be Very Useful for Acid Gas Removal Applications,” Energy Progress, vol. 4, pp. 137142, 1984.Google Scholar
Burr, B. and Lyddon, L., “A Comparison of Physical Solvents for Acid Gas Removal,” presented at the Gas Processors' Association Convention, Grapevine, TX, 2008.Google Scholar
Astarita, G., Savage, D. W., and Bisio, A., Gas Treating with Chemical Solvents. New York: John Wiley & Sons, 1983.Google Scholar
Baker, R. W. and Lokhandwala, K., “Natural Gas Processing with Membranes: An Overview,” Industrial & Engineering Chemistry Research, vol. 47, pp. 21092121, 2008.CrossRefGoogle Scholar
Baker, R. W., “Future Directions of Membrane Gas Separation Technology,” Industrial & Engineering Chemistry Research, vol. 41, pp. 13931411, 2002.CrossRefGoogle Scholar
Bara, J. E., Carlisle, T. K., Gabriel, C. J., Camper, D., Finotello, A., Gin, D. L., et al. ., “Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids,” Industrial & Engineering Chemistry Research, vol. 48, pp. 27392751, Mar 2009.CrossRefGoogle Scholar
Bara, J. E., Camper, D. E., Gin, D. L., and Noble, R. D., “Room-Temperature Ionic Liquids and Composite Materials: Platform Technologies for CO2 Capture,” Accounts of Chemical Research, vol. 43, pp. 152159, Jan 2010.CrossRefGoogle Scholar
Ramdin, M., de Loos, T. W., and Vlugt, T. J. H., “State-of-the-Art of CO2 Capture with Ionic Liquids,” Industrial & Engineering Chemistry Research, vol. 51, pp. 81498177, 2012/06/20 2012.CrossRefGoogle Scholar
Camper, D., Bara, J. E., Gin, D. L., and Noble, R. D., “Room-Temperature Ionic Liquid-Amine Solutions: Tunable Solvents for Efficient and Reversible Capture Of CO2,” Industrial & Engineering Chemistry Research, vol. 47, pp. 84968498, Nov 2008.10.1021/ie801002mCrossRefGoogle Scholar
Bates, E. D., Mayton, R. D., Ntai, I., and Davis, J. H., “CO2 capture by a task-specific ionic liquid,” Journal of the American Chemical Society, vol. 124, pp. 926927, Feb 2002.CrossRefGoogle ScholarPubMed
Gurkan, B. E., de la Fuente, J. C., Mindrup, E. M., Ficke, L. E., Goodrich, B. F., Price, E. A., et al. ., “Equimolar CO2 Absorption by Anion-Functionalized Ionic Liquids,” Journal of the American Chemical Society, vol. 132, pp. 21162117, Feb 2010.CrossRefGoogle Scholar
Bara, J. E., “What chemicals will we need to capture CO2?,” Greenhouse Gases: Sci. Technol., vol. 2, pp. 162171, // 2012.CrossRefGoogle Scholar
Shannon, M. S. and Bara, J. E., “Properties of Alkylimidazoles as Solvents for CO2 Capture and Comparisons to Imidazolium-Based Ionic Liquids,” Industrial & Engineering Chemistry Research, vol. 50, pp. 86658677, 2011.10.1021/ie200259hCrossRefGoogle Scholar
Bara, J. E., “Versatile and Scalable Method for Producing N-Functionalized Imidazoles,” Ind. Eng. Chem. Res., vol. 50, pp. 1361413619, // 2011.10.1021/ie102535cCrossRefGoogle Scholar
McCabe, W. L., Smith, J. C., and Harriott, P., Unit Operations of Chemical Engineering, 6th ed. New York: McGraw-Hill, 2001.Google Scholar
Freeman, S. A., Dugas, R., Van Wagener, D. H., Nguyen, T., and Rochelle, G. T., “Carbon dioxide capture with concentrated, aqueous piperazine,” International Journal of Greenhouse Gas Control, vol. 4, pp. 119124, Mar 2010.CrossRefGoogle Scholar
Hindman, M. S., Stanton, A. D., Irvin, A. C., Wallace, D. A., Moon, J. D., Reclusado, K. R., et al. ., “Synthesis of 1,2-dialkyl-, 1,4(5)-dialkyl-, and 1,2,4(5)-trialkylimidazoles via a one-pot method,” Ind. Eng. Chem. Res., vol. 52, pp. 1188011887, // 2013.10.1021/ie401861bCrossRefGoogle Scholar
Gutowski, K. E. and Maginn, E. J., “Amine-Functionalized Task-Specific Ionic Liquids: A Mechanistic Explanation for the Dramatic Increase in Viscosity upon Complexation with CO2 from Molecular Simulation,” Journal of the American Chemical Society, vol. 130, pp. 1469014704, Nov 2008.CrossRefGoogle ScholarPubMed
Shannon, M. S. and Bara, J. E., “Reactive and Reversible Ionic Liquids for CO2 Capture and Acid Gas Removal,” Separation Science and Technology, vol. 47, pp. 178188, 2012/01/15 2012.CrossRefGoogle Scholar
Emel'yanenko, V. N., Portnova, S. V., Verevkin, S. P., Skrzypczak, A., and Schubert, T., “Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles,” Journal of Chemical Thermodynamics, vol. 43, pp. 15001505, Oct 2011.CrossRefGoogle Scholar
Emel'yanenko, V. N., Portnova, S. V., Verevkin, S. P., and Skrzypczak, A., “Building Blocks for Ionic Liquids: A Study of Alkyl Chain Length Dependence of Vaporization Enthalpies of 1-(n-Alkyl)-2-methylimidazoles,” Journal of Chemical & Engineering Data, vol. 56, pp. 35323540, 2011/09/08 2011.10.1021/je200336cCrossRefGoogle Scholar
Verevkin, S. P., Zaitsau, D. H., Emel'yanenko, V. N., Paulechka, Y. U., Blokhin, A. V., Bazyleva, A. B., et al. ., “Thermodynamics of Ionic Liquids Precursors: 1-Methylimidazole,” Journal of Physical Chemistry B, vol. 115, pp. 44044411, Apr 2011.CrossRefGoogle ScholarPubMed
Garist, I. V., Verevkin, S. P., Bara, J. E., Hindman, M. S., and Danielsen, S. P. O., “Building Blocks for Ionic Liquids: Vapor Pressures and Vaporization Enthalpies of 1-(n-Alkyl)-benzimidazoles,” Journal of Chemical & Engineering Data, vol. 57, pp. 18031809, 2012.CrossRefGoogle Scholar
Garist, I. V., Verevkin, S. P., Samarov, A. A., Bara, J. E., Hindman, M. S., and Danielsen, S. P. O., “Building Blocks for Ionic Liquids: Vapor Pressures and Vaporization Enthalpies of Alkoxy Derivatives of Imidazole and Benzimidazole,” Ind. Eng. Chem. Res., vol. 51, pp. 1551715524, // 2012.CrossRefGoogle Scholar
Shannon, M. S., Tedstone, J. M., Danielsen, S. P. O., Hindman, M. S., and Bara, J. E., “Properties and Performance of Ether-Functionalized Imidazoles as Physical Solvents for CO2 Separations,” Energy Fuels, vol. 27, pp. 33493357, // 2013.CrossRefGoogle Scholar
Shannon, M. S., Tedstone, J. M., Danielsen, S. P. O., and Bara, J. E., “Evaluation of Alkylimidazoles as Physical Solvents for CO2/CH4 Separation,” Industrial & Engineering Chemistry Research, vol. 51, pp. 515522, 2012/01/11 2012.CrossRefGoogle Scholar
Shannon, M. S., Hindman, M. S., Danielsen, S. P. O., Tedstone, J. M., Gilmore, R. D., and Bara, J. E., “Properties of alkylbenzimidazoles for CO2 and SO2 capture and comparisons to ionic liquids,” Sci. China: Chem., vol. 55, pp. 16381647, // 2012.CrossRefGoogle Scholar
Liu, H., Zhang, Z., Bara, J. E., and Turner, C. H., “Electrostatic Potential within the Free Volume Space of Imidazole-Based Solvents: Insights into Gas Absorption Selectivity,” J. Phys. Chem. B, vol. 118, pp. 255264, // 2014.CrossRefGoogle ScholarPubMed
Turner, C. H., Cooper, A., Zhang, Z., Shannon, M. S., and Bara, J. E., “Molecular Simulation of the Thermophysical Properties of N-Functionalized Alkylimidazoles,” The Journal of Physical Chemistry B, vol. 116, pp. 65296535, 2012.CrossRefGoogle ScholarPubMed
Liu, H., Bara, J. E., and Turner, C. H., “DFT study on the effect of exocyclic substituents on the proton affinity of 1-methylimidazole,” Chem. Phys., vol. 416, pp. 2125, // 2013.CrossRefGoogle Scholar
Yao, K., Wang, Z., Wang, J., and Wang, S., “Biomimetic material-poly(N-vinylimidazole)-zinc complex for CO2 separation,” Chemical Communications, vol. 48, pp. 17661768, 2012.CrossRefGoogle Scholar
Allen, M. H., Hemp, S. T., Smith, A. E., and Long, T. E., “Controlled Radical Polymerization of 4-Vinylimidazole,” Macromolecules, vol. 45, pp. 36693676, 2012/05/08 2012.CrossRefGoogle Scholar
Green, M. D., Allen, M. H. Jr, Dennis, J. M., Cruz, D. S.-d. l, Gao, R., Winey, K. I., et al. ., “Tailoring macromolecular architecture with imidazole functionality: A perspective for controlled polymerization processes,” European Polymer Journal, vol. 47, pp. 486496, 2011.CrossRefGoogle Scholar
Anderson, E. B. and Long, T. E., “Imidazole- and imidazolium-containing polymers for biology and material science applications,” Polymer, vol. 51, pp. 24472454, May 2010.CrossRefGoogle Scholar