Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:42:05.206Z Has data issue: false hasContentIssue false

Imaging and Elemental Analysis of Polymer/Fullerene Nanocomposite Memory Devices

Published online by Cambridge University Press:  01 February 2011

Ari Laiho
Affiliation:
[email protected], Helsinki University of Technology, Department of Engineering Physics and Center for New Materials, P.O. Box 5100, FIN-02015 TKK, Finland, Espoo, 02015, Finland
Jayanta K. Baral
Affiliation:
[email protected], Åbo Akademi University, Department of Physics and Center for Functional Materials, Porthansgatan 3, FIN-20500, Turku, N/A, Finland
Himadri S. Majumdar
Affiliation:
[email protected], Åbo Akademi University, Department of Physics and Center for Functional Materials, Porthansgatan 3, FIN-20500, Turku, N/A, Finland
Daniel Tobjörk
Affiliation:
[email protected], Åbo Akademi University, Department of Physics and Center for Functional Materials, Porthansgatan 3, FIN-20500, Turku, N/A, Finland
Janne Ruokolainen
Affiliation:
[email protected], Helsinki University of Technology, Department of Engineering Physics and Center for New Materials, P.O. Box 5100, FIN-02015 TKK, Espoo, N/A, Finland
Ronald Österbacka
Affiliation:
[email protected], Åbo Akademi University, Department of Physics and Center for Functional Materials, Porthansgatan 3, FIN-20500, Turku, N/A, Finland
Olli Ikkala
Affiliation:
[email protected], Helsinki University of Technology, Department of Engineering Physics and Center for New Materials, P.O. Box 5100, FIN-02015 TKK, Espoo, N/A, Finland
Get access

Abstract

In this report we study the morphology and chemical composition of a nanocomposite memory device where the active device layer is sandwiched between two aluminum electrodes and consists of a nanocomposite of polystyrene (PS) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM). The morphology of the active layer is imaged both in plan-view and cross-sectional view by using transmission electron microscopy (TEM). We introduce two techniques to prepare the cross-sections from the active layer, namely, a conventional technique based on microtoming and secondly nanostructural processing with focused ion beam (FIB). Based on the morphology studies we deduce that within the used concentrations the PCBM forms spherical nanoscale clusters within the continuous PS matrix. The chemical composition of the device is determined by using X-ray photoelectron spectroscopy (XPS) and it shows that the thermal evaporation of the aluminum electrodes does not lead to observable inclusion of the aluminum into the active material layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakasha, Y. and Watanabe, Y. U.S. Patent No. 5 390 145 (14 Feb 1995).Google Scholar
2. Bozano, L. D. Kean, B. W. Beinhoff, M. Carter, K. R. Rice, P. M. and Scott, J. C. Adv. Funct. Mater. 15, 1933 (2005).Google Scholar
3. Majumdar, H. S. Baral, J. K. Österbacka, R., Ikkala, O. and Stubb, H. Org. Electron. 6, 188 (2005).Google Scholar
4. Ouyang, J. Y. Chu, C. W. Szmanda, C. R. Ma, L. P. and Yang, Y. Nat. Mater. 3, 918 (2004).Google Scholar
5. Paul, S. Kanwal, A. and Chhowalla, M. Nanotechnology 17, 145 (2006).Google Scholar
6. Yang, Y. Ouyang, J. Ma, L. P. Tseng, R. J. H. and Chu, C. W. Adv. Funct. Mater. 16, 1001 (2006).Google Scholar
7. Scott, J. C. and Bozano, L. D. Adv. Mater. 19, 1452 (2007).Google Scholar
8. Tang, W. Shi, H. Z. Xu, G. Ong, B. S. Popovic, Z. D. Deng, J. C. Zhao, J. and Rao, G. H. Adv. Mater. 17, 2307 (2005).Google Scholar
9. Efimenko, K. Rybka, V. Svorcik, V. and Hnatowicz, V. Appl. Phys. A 67, 503 (1998).Google Scholar
10..Cölle, M., Büchel, M., and Leeuw, D. M. de, Org. Electron. 7, 305 (2006).Google Scholar
11. Baral, J. K. Majumdar, H. S. Laiho, A. Jiang, H. Kauppinen, E. I. Ras, R. H. A. Ruokolainen, J., Ikkala, O. and Österbacka, R., Nanotechnology 19, 035203 (2007).Google Scholar
12. Laiho, A. Baral, J. K. Majumdar, H. S. Jansson, F. Soininen, A. Österbacka, R., and Ikkala, O., (submitted).Google Scholar
13. Reyntjens, S. and Puers, R. J. Micromech. Microeng. 11, 287 (2001).Google Scholar
14. Juŝka, G., Arlauskas, K. nas, M. Vili, ius, K. Genevi, Österbacka, R., and Stubb, H. Phys. Rev. B 62, £R16235 (2000).Google Scholar
15. Williams, D. B. and Carter, C. B. Transmission electron microscopy: a textbook for materials science, (Plenum Press, New York, 1996) p. 10.Google Scholar