Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T10:52:37.419Z Has data issue: false hasContentIssue false

Hydrothermally Grown Single-Crystalline Zinc Oxide; Characterization and Modification

Published online by Cambridge University Press:  01 February 2011

Bengt Gunnar Svensson
Affiliation:
[email protected], University of Oslo, Physics/SMN, Sem Sælemsvei 24, Blindern, Oslo, Oslo, NO-0316, Norway, +4722852859, +4722852860
Thomas Moe Børseth
Affiliation:
[email protected], University of Oslo, Physics/SMN, Oslo, NO-0316, Norway
Klaus Magnus Johansen
Affiliation:
[email protected], University of Oslo, Physics/SMN, Oslo, NO-0316, Norway
Tariq Maqsood
Affiliation:
[email protected], University of Oslo, Physics/SMN, Oslo, NO-0316, Norway
Ramon Schifano
Affiliation:
Ramon Schifano [email protected], University of Oslo, Physics/SMN, Oslo, NO-0316, Norway
Ulrike Grossner
Affiliation:
[email protected], University of Oslo, Physics/SMN, Oslo, NO-0316, Norway
Jens S. Christensen
Affiliation:
[email protected], University of Oslo, Physics/SMN, Oslo, NO-0316, Norway
Lasse Vines
Affiliation:
[email protected], University of Oslo, Physics/SMN, Oslo, NO-0316, Norway
Peter Klason
Affiliation:
[email protected], University of Gothenburg, Physics, Göteborg, SE-41296, Sweden
Qing X. Zhao
Affiliation:
[email protected], University of Gothenburg, Physics, Göteborg, SE-41296, Sweden
Magnus Willander
Affiliation:
[email protected], University of Gothenburg, Physics, Göteborg, SE-41296, Sweden
Filip Tuomisto
Affiliation:
[email protected], Helsinki University of Technology, Physics, Helsinki, F-02015 TKK, Finland
Wolfgang Skorupa
Affiliation:
[email protected], Research Center Rossendorf, Dresden, D-01314, Germany
Edouard V. Monakhov
Affiliation:
[email protected], University of Oslo, Physics/SMN, Oslo, NO-0316, Norway
Andrej Yu. Kuznetsov
Affiliation:
[email protected], University of Oslo, Physics/SMN, Oslo, NO-0316, Norway
Get access

Abstract

An overview of our recent results on characterization and modification of high-resistivity n-type bulk zinc oxide samples, grown by hydrothermal techniques, is given. Three specific topics are addressed; (i) the role of lithium (Li) as an electrically compensating impurity, (ii) extrinsic n-type doping by hydrogen implantation, and (iii) influence of annealing conditions on deep band emission. In (i), furnace annealing of as-grown samples at temperatures above ∼800 °C is shown to cause out-diffusion of residual Li impurities and concurrently, the resistivity decreases. After annealing at 1400 °C, a resistivity close to 10−1 Ωcm is obtained and the Li content is reduced from above 1017 cm−3 to the mid 1015 cm−3 range, providing evidence for the crucial role of Li as an electrically compensating impurity. For ion-implanted samples, vacancy clusters evolve during post-implant flash lamp annealing (20 ms duration) and these clusters appear to trap and deactivate Li with a resulting improvement of the n-type conductivity. However, these clusters have a limited stability and start to dissociate already after 1h at 900 °C, accompanied by a decrease in the conductivity. For topic (ii), n-type doping by hydrogen implantation is shown to enhance the conductivity by about 5 orders of magnitude already in the as-implanted state. Despite substantial loss of hydrogen, the conductivity remains stable, or even increases, after annealing up to ≥600 °C, and necessary conditions for doping by hydrogen are discussed. In (iii), the origin of the commonly observed deep band emission from monocrystalline zinc oxide is investigated using a concept of annealing as-grown samples in different atmospheres. A strong influence by the atmosphere and temperature is observed and the results can be interpreted in terms of dominant effects on the emission by vacancy-related defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fuller, M.L., Science 70, 196 (1929).Google Scholar
2. Bunn, C.W., Proc. Phys. Soc. 47, 835 (1935).10.1088/0959-5309/47/5/307Google Scholar
3. Brækken, H. and Jore, O., Trans. R. Norw. Soc. Sci. Lett. 8, 1 (1935).Google Scholar
4. BÕrseth, T. Moe, PhD thesis Annealing of ion-implanted and as-grown ZnO, University of Oslo (ISSN 1501-7710, No 612, 2007), p. 3.Google Scholar
5.See e.g., Osinsky, A. and Karpov, S. in Zinc Oxide Bulk, Thin Films and Nanostructures, edited by Jagadish, C. and Pearton, S.J. (Elsevier, Oxford, UK, 2006), p.525.Google Scholar
6. Wei, Z.P., Lu, Y.M., Shen, D.Z., Zhang, Z.Z., Yao, B., Li, B.H., Zhang, J.Y., Zhao, D.X., Fan, X.W., Tang, Z.K., Appl. Phys. Lett. 90, 042113 (2007).Google Scholar
7.See e.g., Look, D.C., Claffin, B., Alivov, Ya.I. and Park, S.J., Phys. Stat. Sol. (a) 10, 2203 (2004), and references therein.10.1002/pssa.200404803Google Scholar
8. Litton, C.W., Alivov, Ya.I., Johnstone, D., Özgür, Ü., Avrutin, V., Fan, Q., Akarca-Biyikli, S.S., Zhu, K. and Morkoç, H., Mat. Sci. Forum 527–529, 1571 (2006).10.4028/www.scientific.net/MSF.527-529.1571Google Scholar
9. Maeda, K., Sato, M., Niikura, I. and Fukuda, T., Semicond. Sci. Technol. 20, S49 (2005).10.1088/0268-1242/20/4/006Google Scholar
10. Skorupa, W., Yankov, R.A., Anwand, W., Voelskow, M., Gebel, T., Downey, D.F. and Arevalo, E.A., Mater. Sci. Eng. B 114–115, 358 (2004).Google Scholar
11. BÕrseth, T. Moe, Tuomisto, F., Christensen, J.S., Skorupa, W., Monakhov, E.V., Svensson, B.G. and Kuznetsov, A.Yu., Phys. Rev. B 74, 161202(R) (2006).10.1103/PhysRevB.74.161202Google Scholar
12. Tuomisto, F., Ranki, V., Saarinen, K. and Look, D.C., Phys. Rev. Lett. 91, 205502 (2003).Google Scholar
13. Thomas, D.G. and Lander, J.J., J. Chem. Phys. 25, 1136 (1956).Google Scholar
14. Hutson, A.R., Phys. Rev. 108, 222 (1957).10.1103/PhysRev.108.222Google Scholar
15. Ip, K., Overberg, M.E., Heo, Y.W., Norton, D.P., Pearton, S.J., Kucheyev, S.O., Jagadish, C., Williams, J.S., Wilson, R.G. and Zavada, J.M., Appl. Phys. Lett. 81, 3996 (2002).Google Scholar
16. Monakhov, E.V., Christensen, J.S., Maknys, K., Svensson, B.G. and Kuznetsov, A.Yu., Appl. Phys. Lett. 87, 191910 (2005).10.1063/1.2128059Google Scholar
17. Janson, M., Linnarsson, M.K., Hallén, A. and Svensson, B.G., Mater. Res. Soc. Symp. Proc. 513, 439 (1998).10.1557/PROC-513-439Google Scholar
18. Cordaro, J.F., Shim, Y. and May, J.E., J. Appl. Phys. 60, 4186 (1986).Google Scholar
19. Sun, Y. and Wang, H., Physica B 325, 157 (2003).Google Scholar
20. Kucheyev, S.O., Deenapanray, P.N.K., Jagadish, C., Williams, J.S., Yano, M., Koike, K., Sasa, S., Inoue, M. and Ogata, K., Appl. Phys. Lett. 81, 3350 (2002).Google Scholar
21. BÕrseth, T. Moe, Christensen, J.S., Maknys, K., Hallén, A., Svensson, B.G. and Kuznetsov, A.Yu., Superlatt. Microstruct. 38, 464 (2005).10.1016/j.spmi.2005.08.017Google Scholar
22.See e.g., Reynolds, D.C., Look, D.C. and Jogai, B., J. Appl. Phys. 89, 6189 (2001), and references therein.Google Scholar
23. Özgúr, Ü., Alivov, Ya.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J. and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).10.1063/1.1992666Google Scholar
24. BÕrseth, T. Moe, Svensson, B.G., Kuznetsov, A.Yu., Klason, P., Zhao, Q.X. and Willander, M., Appl. Phys. Lett. 89, 262112 (2006).10.1063/1.2424641Google Scholar
25. Wang, L. and Giles, N.C., J. Appl. Phys. 94, 973 (2003).10.1063/1.1586977Google Scholar
26. Varshni, Y.P., Phys. Stat. Sol. 19, 459 (1967); Y.P. Varshni, ibid., 20, 9 (1967).Google Scholar
27. Klason, P., BÕrseth, T. Moe, Zhao, Q.X., Svensson, B.G., Kuznetsov, A.Yu., Bergman, J.P. and Willander, M., Sol. Stat. Comm., accepted (2007).Google Scholar
28. Look, D.C., Hemsky, J.W. and Sizelove, J.R., Phys. Rev. Lett. 82, 2552 (1999).Google Scholar
29. Erhart, P., Albe, K. and Klein, A., Phys. Rev. B 73, 205203 (2006).Google Scholar
30. Kohan, A.F., Ceder, G., Morgan, D. and Walle, C.G. Van de, Phys. Rev. B 61, 15019 (2000).Google Scholar