Article contents
Hydrogenation and Defect Creation in GaAs-Based Devices During High Density Plasma Processing
Published online by Cambridge University Press: 10 February 2011
Abstract
The effects of Inductively Coupled Plasma (ICP) and Electron Cyclotron Resonance (ECR) H2 plasmas on GaAs metal semiconductor field effect transistors (MESFETs), high electron mobility transistors (HEMTs) and heterojunction bipolar transistors (HBTs) have been measured as a function of ion flux, ion energy and process pressure. The chemical effects of hydrogenation have been compared to direct physical bombardment by Ar plasmas under the same conditions. Si dopant passivation in MESFETs and HEMTs and C base-dopant passivation in HBTs produces much larger changes in sheet resistance, breakdown voltage and device gain or transconductance than Ar ion bombardment and suggests that H2-containing plasma chemistries (CH4/H2 for semiconductor etching, SiH4 for dielectric deposition, CHF3 for dielectric etching) should be avoided, or at least the exposure of the surface minimized. In some cases the device degradation is less for higher source power conditions, due to the suppression of cathode dc self-bias and hence ion energy.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1998
References
- 1
- Cited by