Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T09:16:26.706Z Has data issue: false hasContentIssue false

Hydrogen Storage in Novel Carbon-Based Nanostructured Materials

Published online by Cambridge University Press:  01 February 2011

Erin S. Whitney
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Calvin J. Curtis
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Chaiwat Engtrakul
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Mark F. Davis
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Tining Su
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Philip A. Parilla
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Lin J. Simpson
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Jeffry L. Blackburn
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Yufeng Zhao
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Yong-Hyun Kim
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Shengbai B. Zhang
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Michael J. Heben
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Anne C. Dillon*
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Get access

Abstract

Experimental wet chemical approaches to complex an iron atom with two C60 fullerenes, representing a new molecule, dubbed a “bucky dumbbell,” have been demonstrated. The structure of this molecule has been determined by 13C solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). Furthermore, this structure has been shown to have unique binding sites for dihydrogen molecules with the technique of temperature programmed desorption (TPD). The new adsorption sites have binding energies that are stronger than that observed for hydrogen physisorbed on planar graphite, but significantly weaker than a chemical C-H bond. Further development of these molecules could make them ideal candidates for onboard vehicular hydrogen storage.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rogner, H.-H., Int. J. Hydrogen Energy 23, 833 (1998).Google Scholar
2 http://www.eere.energy.gov/hydrogenandfuelcells/mypp/.Google Scholar
3 http://www.sc.doe.gov/bes/hydrogen.pdf.Google Scholar
4 Dillon, A. C. and Heben, M. J., Appl. Phys. A 72, 133 (2001).Google Scholar
5 Dillon, A. C., Blackburn, J. L., Parilla, P. A., Zhao, Y., Kim, Y.-H., Zhang, S. B., Mahan, A. H., Alleman, J. L., Jones, K. M., Gilbert, K. E. H., and Hebern, M. J., in Discovering the Mechanism of H2 Adsorption on Aromatic Carbon Nanostructures to Develop Adsorbents for Vehicular Applications, Boston, Massachusetts, 2004 (Materials Research Society), p. 117.Google Scholar
6 Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S., and Heben, M. J., Nature 386, 377 (1997).Google Scholar
7 Kubas, G. J., J. Organometall. Chem. 635, 37 (2001).Google Scholar
8 Le-Husebo, T. and Jensen, C. M., Inorg. Chem. 32, 3797 (1993).Google Scholar
9 Niu, J., Rao, K., and Jena, P., Phys. Rev. Lett. 68, 2277 (1992).Google Scholar
10 Michael, D. and Mingos, P., J. Organometall. Chem. 635, 1 (2001).Google Scholar
11 Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., Nature 318, 162 (1985).Google Scholar
12 Tast, F., Malinowski, N., Frank, S., Heinebrodt, M., Billas, I. M. L., and Martin, T. P., Phys. Rev. Lett. 77, 3529 (1996).Google Scholar
13 Kim, Y.-H., Zhao, Y., Williamson, A., Heben, M. J., and Zhang, S. B., Phys. Rev. Lett. 96, 016102 (2006).Google Scholar
14 Zhao, Y., Kim, Y.-H., Dillon, A. C., Heben, M. J., and Zhang, S. B., Phys. Rev. Lett. 94, 155504 (2005).Google Scholar
15 Sawamura, M., Toganoh, M., Kuninobu, Y., Kato, S., and Nakamura, E., Chem. Lett. 29, 270 (2000).Google Scholar
16 Sun, Q., Wang, Q., Jena, P., and Kawazoe, Y., J. Am. Chem. Soc. 127, 14582 (2005).Google Scholar
17 Yildirim, T. and Ciraci, S., Phys. Rev. Lett. 94, 175501 (2005).Google Scholar
18 Engtrakul, C., Davis, M. R., Gennett, T., Dillon, A. C., Jones, K. M., and Heben, M. J., J. Am. Chem. Soc. 127, 17548 (2005).Google Scholar
19 Madix, R. J., in Chemistry and Physics of Solid Surfaces, edited by Vanselov, R. (CRC, Boca Raton, 1979), p. 6372.Google Scholar