Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T12:22:35.806Z Has data issue: false hasContentIssue false

Hydrogen Production by Catalytic Steam Reforming of Model Compounds of Biomass Fast Pyrolysis Oil

Published online by Cambridge University Press:  01 February 2011

P. Lan
Affiliation:
Research Center for Biomass Energy, East China University of Science and Technology, Shanghai 200237, China School of Chemistry and Eco-engineering of Guangxi University for Nationalities, Key Laboratory of Chemical and Biological Transforming Process, University of Guangxi, Nanning 530006, China
Q. L. Xu
Affiliation:
Research Center for Biomass Energy, East China University of Science and Technology, Shanghai 200237, China
L. H. Lan
Affiliation:
School of Chemistry and Eco-engineering of Guangxi University for Nationalities, Key Laboratory of Chemical and Biological Transforming Process, University of Guangxi, Nanning 530006, China
Y. J. Yan
Affiliation:
Research Center for Biomass Energy, East China University of Science and Technology, Shanghai 200237, China
J. A. Wang
Affiliation:
Laboratorio de Catálisis y Materiales, ESIQIE, Instituto Politécnico Nacional, Av. Politécnico S/N, Col. Zacatenco, 07738 México D.F., México. E-mail: [email protected], [email protected], [email protected]
Get access

Abstract

A Ni/MgO-La2O3-Al2O3 catalyst with Ni as active component, Al2O3 as support, MgO and La2O3 as additives was prepared and its catalytic activity was evaluated in the process of hydrogen production from catalytic steam reforming of bio-oil. In the catalytic evaluation, some typical components present in bio-oil such as acetic acid, butanol, furfural, cyclopentanone and m-cresol were mixed following a certain proportion as model compounds. Reaction parameters like temperature, steam to carbon molar ratio and liquid hourly space velocity were studied with hydrogen yield as index. The optimal reaction conditions were obtained as follows: temperature 750-850 °C, steam to carbon molar ratio 5-9, liquid hourly space velocity 1.5-2.5 h-1. The maximum hydrogen yield was 88.14%. The carbon deposits were formed on the catalyst surface but its content decreased as reaction temperature increased in the bio-oil steam reforming process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pena, M.A., Gomez, J. P., G, J. L.. Fierro. Appl. Catal. A, 144 (1996) 7.Google Scholar
[2] Effendi, A., Zhang, Z. G., Hellgardt, K., Honda, K., T. Yoshida. Catal. Today 77 (2002) 181z.Google Scholar
[3] Corella, J., Orio, A., P. Aznar. Ind. Eng. Chem. Res. 37 (1998) 4617.Google Scholar
[4] Herguido, J., Corella, J., J. Gonzalez-Saiz. Ind. Eng. Chem. Res. 31 (1992) 1274.Google Scholar
[5] Cavallaro., S. Energy Fuels 14 (2000) 1195.Google Scholar
[6] Deluga, G. A., Salge, J. R., Schmidt, L. D., Verykios, X. E.. Science 303 (2004) 993.Google Scholar
[7] Effendi, A., Zhang, Z. G., Hellgardt, K., Honda, K., T. Yoshida. Catal. Today 77 (2002) 181.Google Scholar
[8] Garcia, L., Salvador, M. L., Arauzo, J., Bilbao, R., Energy. Fuels. 13 (1999) 851.Google Scholar
[9] Basagiannis, A. C., Verykios, X. E., Appl. Catal. A 308 (2006) 182.Google Scholar
[10] Wang, D., Montane, D., E. Chornet. Appl. Catal. A, 143 (1996) 245.Google Scholar
[11] Garcia, L., French, R., Czernik, S., E. Chornet. Appl. Catal. A, 201 (2000) 225.Google Scholar
[12] Scott, D. S., Piskorz, J., D. Radlein. Ind. Eng. Chem. Process Des. Dev. 24 (1985) 581.Google Scholar
[13] Bridgwater, A. V., J. Anal. Appl. Pyrol. 51 (1999) 3.Google Scholar
[14] Lappas, A. A., Samolada, M. C., Iatridis, D. K., Voutetakis, S. S., I. A. Vasalos. Fuel 81 (2002) 2087.Google Scholar
[15] Lu, Q., Li, W. Z., Zhu, X. F., Energy Conversion Management 50 (2009) 1376.Google Scholar
[16] Ba, T., Chaala, A., Garci-Perez., M. Energy and Fuels 18 (2004) 704.Google Scholar
[17] Kechagiopoulos, P. N., Voutetakis, S. S., Lemonidou, A. A., Vasalos, I. A.. Catal. Today 127 (2007) 246.Google Scholar
[18] WU, C., Huang, Q., Sui, M., Yan, Y., Wang., F. Fuel Process. Technol. 89 (2010) 1306.Google Scholar
[19] Takanabe, K., Aika, K., Seshan, K., L. Lefferts. J. Catal. 227 (2004) 101.Google Scholar
[20] Chen, Y. Q., Yuan, L. X., Ye, T. Q., Qiu, S. B., Zhu, X. F., F. Torimoto, Y. S., Yamamoto, M., Q. X. Li. Int. J. Hydrogen Energy 34 (2009) 1760.Google Scholar
[21] Bimbela, F., Oliva, M., Ruiz, J., Garcia, L., J. Arauzo. J. Anal. Appl. Pyrol. 85 (2009) 204.Google Scholar
[22] Galdamez, J. R., Garcia, L., R. Bibao. Energy Fuels, 19 (2005) 1133.Google Scholar
[23] Kinoshita, C. M., Turn, S. Q.. Int. J. Hydrogen Energy 28 (2003) 1065.Google Scholar
[24] Trimm, D. L.. Catal. Today 37 (1997) 233.Google Scholar
[25] Fatsikostas, A. N., Verykios, X. E.. J. Catal. 225 (2004) 439.Google Scholar