Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T09:37:50.708Z Has data issue: false hasContentIssue false

Hydrogen in Crystalline Silicon

Published online by Cambridge University Press:  28 February 2011

S. J. Pearton*
Affiliation:
AT & T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

The ability of hydrogen to migrate in crystalline Si at low temperatures (<400°C) and bond to a variety of both shallow and deep level impurities, passivating their electrical activity, is of fundamental and technological interest. Recent results on the deactivation of the shallow acceptors in Si are compared with similar experiments in other semiconductors, microscopic models are proposed, and the implications for the states of hydrogen in the Si lattice at a variety of temperatures, and the diffusivity of some of these different states, is discussed. New results on the migration of atomic hydrogen under electronic stimulation are also detailed, along with a compendium of the deep levels in Si passivated by reaction with hydrogen. Surface damage by hydrogen-containing plasmas, and the infrared and electrical properties of H-related defect complexes are also reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Picraux, S. T., Vook, F. L. and Stein, H. J., Defects and Radiation Effects in Semiconductors 1978 (ed. Albany, J. H.), Inst. Phys. Conf. Ser. 46, 31 (1979).Google Scholar
2. Shi, T. S., Sahu, S. N., Corbett, J. W. and Snyder, L. C., Scientia Sinica 27, 98 (1984).Google Scholar
3. Pearton, S. J., J. Electron. Mater. 14a, 737 (1985).Google Scholar
4. Sah, C. T., Aun, J. Y. C. and Tzou, J. J. T., Appl. Phys. Lett. 43, 204 (1983).CrossRefGoogle Scholar
5. Pankove, J. I., Wance, R. O. and Berkeyheiser, J. E., Appl. Phys. Lett. 45, 1100 (1984).Google Scholar
6. Pankove, J. I., Lampert, M. A. and Tarng, M. L., Appl. Phys. Lett. 32, 439 (1978).CrossRefGoogle Scholar
7. Johnson, N. M., Biegelsen, D. K., Moyer, M. D., Deline, V. R. and Evans, C. A. Jr., Appl. Phys. Lett. 38, 995 (1981).CrossRefGoogle Scholar
8. Corbett, J. W., Sahu, S. N., Shi, T. S. and Snyder, L. C., Phys. Lett. 93A, 303 (1983).Google Scholar
9. Singh, V.A., Weigel, C., Corbett, J. W. and Roth, L. M., Phys. Stat. Sol. 81b, 637 (1977).Google Scholar
10. Wang, J. and Kittel, C. A., Phys. Rev. B7, 713 (1973).Google Scholar
11. Katayama-Yoshida, H. and Shindo, K., J. Electron. Mater. 14a, 773 (1985).Google Scholar
12. Mainwood, A. and Stoneham, A. M., J. Phys. C17, 2513 (1984).Google Scholar
13. Pearton, S. J. and Tavendale, A. J., Phys. Rev. B 26, 7105 (1982).CrossRefGoogle Scholar
14. Mogro-Campero, A., Love, R. P. and Schubert, R., J. Electrochem Soc. 132, 2006 (1985).Google Scholar
15. Pearton, S. J. and Haller, E. E., J. Appl. Phys. 54, 3613 (1983).Google Scholar
16. Pearton, S. J. and Tavendale, A. J., J. Appl. Phys. 54, 1375 (1983).CrossRefGoogle Scholar
17. Pearton, S. J. and Tavendale, A. J., J. Phys. C17, 6701 (1984).Google Scholar
18. Pearton, S. J., Chantre, A. M., Kimerling, L. C., Dautremont-Smith, W. C. and Cummings, K. D. (this volume).Google Scholar
19. Pearton, S. J., Phys. Stat. Sol. A72, K73 (1983).Google Scholar
20. Benton, J. L., Doherty, C. J., Ferris, S. D., Flamm, D. L., Kimerling, L. C. and Leamy, H. J., Appl. Phys. Lett. 36, 670 (1980).Google Scholar
21. Pearton, S. J., Tavendale, A. J. and Lawson, E. M., Rad. Effects 79, 21 (1983).Google Scholar
22. Pohoryles, B., Phys. Stat. Sol. A67, K75 (1981).Google Scholar
23. Hansen, W. L., Haller, E. E. and Luke, P. N., IEEE Trans NS29, 265 (1982).Google Scholar
24. Pearton, S. J., Appl. Phys. Lett. 40, 253 (1982).CrossRefGoogle Scholar
25. Lagowski, J., Kaminska, M., Parsey, J. M., Gatos, H. C. and Lichtensteiger, M., Appl. Phys. Lett. 41, 1078 (1982).Google Scholar
26. Pearton, S. J., J. Appl. Phys. 53, 4509 (1982).Google Scholar
27. Pearton, S. J., Haller, E. E. and Elliott, A. G., Electron. Lett. 19, 1052 (1983).Google Scholar
28. Oehrlein, G. S., Lindstrom, J. L. and Corbett, J. W., Phys. Lett. 81, 246 (1981).Google Scholar
29. Pearton, S. J., Hansen, W. L., Haller, E. E. and Kahn, J. M., J. Appl. Phys. 55, 1221 (1984).CrossRefGoogle Scholar
30. Pearton, S. J., Kahn, J. M., Hansen, W. L. and Hailer, E. E., J. Appl. Phys. 55, 1461 (1984).Google Scholar
31. Chevalier, J., Dautremont-Smith, W. C., Tu, C. W. and Pearton, S. J., Appl. Phys. Lett. 47, 108 (1985).CrossRefGoogle Scholar
32. Johnson, N. M. and Moyer, M. D., Appl. Phys. Lett 46, 787 (1985).Google Scholar
33. Mikkelsen, J. C. Jr., Appl. Phys. Lett. 46, 882 (1985).Google Scholar
34. Leo, G. G. De and Fowler, W. B., Phys. Rev. B31, 6861 (1955).Google Scholar
35. Pankove, J. I., Zanzucchi, P. J., Magee, C. W. and Lucovsky, G., Appl. Phys. Lett. 46, 421 (1955).Google Scholar
36. De Leo, G. G. and Fowler, W. B., J. Electron. Mat. 14a 745 (1985).Google Scholar
37. Johnson, N. M., Phys. Rev. B31, 5525 (1985).Google Scholar
38. Pankove, J. I., Magee, C. W. and Wance, R. O., Appl. Phys. Lett. 47, 748 (1985).Google Scholar
39. Tavendale, A. J., Alexiev, D. and Williams, A. A., Appl. Phys. Lett. 47, 316 (1985).Google Scholar
40. Tavendale, A. J., Alexiev, D., Williams, A. A. and Pearton, S. J., (this volume).Google Scholar
41. Assali, L. V. C. and Leite, J. R., Phys. Rev. Lett. 55 980 (1985).CrossRefGoogle Scholar
42. Pearton, S. J., Dautremont-Smith, W. C., Chevallier, J., Tu, C. W. and Cummings, K. D. (unpublished).Google Scholar
43. Freiser, R. G., Montillo, F. J., Zingerman, N. B., Chu, W. K. and Mader, S. R., J. Electrochem. Soc. 130, 2237 (1983).Google Scholar
44. Martinuzzi, S., Sebar, M. A. and Gervais, J., Appl. Phys. Lett. 47, 376 (1985).CrossRefGoogle Scholar
45. Oehrlein, G. S., Tromp, R. M., Lee, Y. H. and Petrillo, E. J., Appl. Phys. Lett. 45, 420 (1984).Google Scholar
46. Panitz, J. K. G., Sharp, D. J. and Hills, C. R., J. Vac. Sci. Technol. A3, 1 (1985).Google Scholar
47. Wang, J. S., Fonash, S. J. and Ashok, S., IEEE Electron Device Letters, EDL–4, 432 (1983).Google Scholar
48. Singh, R., Fonash, S. J. Rohatgi, A., Choudhury, P. R. and Gigante, J., J. Appl. Phys. 55, 867 (1984).Google Scholar
49. Singh, R. and Ashok, S., Appl. Phys. Lett. 47 426 (1985).Google Scholar
50. Guogang, Q. and Zonglu, H., Sol. St. Commun. 53, 975 (1985).Google Scholar
51. Irmscher, K., Klose, H. and Maass, K., J. Phys. C17, 6317 (1984).Google Scholar
52. Gorelkinskii, Y. and Nevinnyi, N. N., Nucl. Instr. Meth. 209/210, 677 (1983).Google Scholar
53. Pflueger, R. J., Corelli, J. C. and Corbett, J. W., Phys. Stat. Sol. A (in press).Google Scholar
54. Oates, A. S., Binns, M. J., Newman, R. C., Tucker, J. H., Wilkes, J. G. and Wilkinson, A., J. Phys. C17, 5695 (1984).Google Scholar
55. Wilson, S. R., Paulson, W. M., Krolikowski, W. F., Fathy, D., Gressett, J. D., Hamdi, A. H. and McDaniel, F. D., Mat. Res. Soc. Symp. Proc. 27, 287 (1984).Google Scholar
56. Zhengyuan, W. and Lanying, L., Neutron Transmutation Doping of Semiconductor Materials (ed. Larrabee, R. D., Plenum, New York, 1983), p. 311.Google Scholar
57. Cheungung, L., Yaoxin, L., Chengtai, S. and Janhua, Y., Neutron Transmutation Doping of Semiconductor Materials (ed. Larrabee, R. D., Plenum, New York, 1983), p. 193.Google Scholar
58. Du, Y. C., Zhang, Y. F. and Meng, X. T., Semicond. Proc., ASTM STP 850 (ed. Gupta, D. C., ASTM 1984) p. 566.Google Scholar
59. Van Wieringen, A. and Warmoltz, N., Physicia 22,849(1956).Google Scholar
60. Mainwood, A and Stoneham, A. M., Physcia B116, 101 (1983).Google Scholar
61. Hall, R. N., IEEE Trans. NS31, 320 (1984).Google Scholar
62. Hall, R. N., J. Electron. Mater. 14a 759 (1984).Google Scholar
63. Shi, T. S., Sahu, S. N., Sganga, A. G., Corbett, J. W. and Snyder, L. C. (to be published).Google Scholar
64. Ichimiya, T. and Furuichi, A., Int. J. Appl. Rad. Isot. 19, 573 (1968).Google Scholar
65. Kazmerski, L. L., J. Vac. Sci. Technol. A3, 1287 (1985).Google Scholar
66. Shi, T. S., Sahu, S. N., Oehrlein, G. S., Hisaki, A. and Corbett, J. W., Phys. Stat. Sol. A74, 329 (1982).Google Scholar
67. Kapoor, V. J., Bailey, R. S. and Stein, H. J., J. Vac. Sci. Tech. A1, 600 (1983).Google Scholar
68. Gale, R., Feigl, F. J., Magee, C. W. and Young, D. R., J. Appl. Phys. 54, 6938 (1983).Google Scholar
69. Kashchieva, S., Danesh, P. and Dyakov, A., Phys. Stat. Sol. A83, 411 (1984).Google Scholar
70. Lysenko, V. S., Lokshin, M. M., Nazarov, A. N. and Rudenko, T. E., Phys. Stat. Sol. A88, 705 (1985).Google Scholar
71. De Leo, G. G., Fowler, W. B. and Watkins, G. D., Phys. Rev. B29, 1819 (1984).CrossRefGoogle Scholar
72. Mikkelsen, J. C. Jr., presented at 1985 Electronic Matl. Conf., Univ. of Colorado, Boulder, CO., June 1985.Google Scholar