Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:49:50.510Z Has data issue: false hasContentIssue false

Hydrogen Flip Model for Metastable Structural Changes in Amorphous Silicon

Published online by Cambridge University Press:  15 February 2011

R. Biswas
Affiliation:
Department of Physics and Astronomy, Microelectronics Research Center and Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011
Y.-P. Li
Affiliation:
Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
Get access

Abstract

We propose a new metastable defect associated with hydrogen atoms in amorphous silicon. A higher energy metastable state is formed when H is flipped to the backside of the Si-H bond at monohydride sites. This defect is described by a double-well potential energy and occurs in addition to metastable dangling bonds. The dipole moment of this “H-flip” defect is larger and increases the infrared absorption. This defect accounts for large structural changes observed on light soaking including larger absorption and volume dilation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Staebler, D. L., and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
[2] Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B 32, 23 (1985).Google Scholar
[3] Fritzsche, H., Solid State Commun 94, 953 (1995).Google Scholar
[4] Yiping, Z., Dianlin, Z., Guanglin, K., Guangqin, P., and Xianbo, L., Phys. Rev. Lett. 78, 558 (1995).Google Scholar
[5] Masson, D. P., Ouhlal, A., Yelon, A., J. Non-Cryst. Sol. 190, 151 (1995).Google Scholar
[6] Hari, P., Taylor, P.C., and Street, R. A., Mat. Res. Soc. Symp. Proc. 337, 329 (1994); J. Non-Cryst. Sol. 198-200, 52 (1996).Google Scholar
[7] Parman, C.E., Israeloff, N.E., and Kakalios, J., Phys. Rev. Lett. 69, 1097 (1992); J. Fan and J. Kakalios, Phil. Mag. B 69, 595 (1994).Google Scholar
[8] Han, D., Gotoh, T., Nishio, M., Sakamoto, T., Nonomura, S., Nitta, S., Wang, Q., Iwanickzko, E., Mat. Res. Soc. Symp. Proc. 505, 445 (1998).Google Scholar
[9] Branz, H., Solid State Comm. 105, 387 (1998).Google Scholar
[10] Liu, X., White, B.E., Pohl, R.O., Iwanizcko, E., Jones, K.M., Mahan, A.H., Nelson, B.N., Crandall, R.S., and Veprek, S., Phys. Rev. Lett. 78, 4418 (1997).Google Scholar
[11] Biswas, R., and Pan, B.C., Appl. Phys. Lett. 72, 371 (1998).Google Scholar
[12] Biswas, R., Pan, B.C., Li, Q., and Yoon, Y., Phys. Rev. B 57, 2253 (1998).Google Scholar
[13] Biswas, R. et al, Phys. Rev. Lett. 60, 2280 (1988).Google Scholar
[14] Barkema, G. and Mousseau, N., Phys. Rev. Lett. 77, 4358 (1996).Google Scholar
[15] VandeWalle, C. and Street, R.A., Phys. Rev. B 49, 14766 (1994).Google Scholar
[16] Kemp, M. and Branz, H., Phys. Rev. B 52, 13946 (1996).Google Scholar
[17] Langford, A.A., Fleet, M.L., Nelson, B.P., Lanford, W.A., and Maley, N., Phys. Rev. B 45, 13367 (1992).Google Scholar
[18] Oguz, S., Anderson, D.A., Paul, W., and Stein, H.J., Phys. Rev. B 22, 880, 1980.Google Scholar
[19] Gotoh, T., Nonomura, S., Nishio, M., Nitta, S., Kondo, M., and Matsuda, A., Appl. Phys. Lett. 72, 2978 (1998).Google Scholar