Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T09:24:01.411Z Has data issue: false hasContentIssue false

Hydrogen Distribution in High Stability A-Si:H Prepared by the Hot Wire Technique

Published online by Cambridge University Press:  10 February 2011

J. Todd Stephen
Affiliation:
Dept. of Phys. & Astronomy, Univ. of North Carolina, Chapel Hill, NC 27599-3255
Daxing Han
Affiliation:
Dept. of Phys. & Astronomy, Univ. of North Carolina, Chapel Hill, NC 27599-3255
A. Harv Mahan
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Yue Wu
Affiliation:
Dept. of Phys. & Astronomy, Univ. of North Carolina, Chapel Hill, NC 27599-3255
Get access

Abstract

In this work the microstructures of 2–3 hydrogen at.% hot-wire CVD a-Si:H films were characterized by 1H nuclear magnetic resonance (NMR). Significant differences were found between the hydrogen distribution in these samples and that in conventional plasma-enhanced CVD samples. Among other things, the broad resonance line in the hot-wire a-Si:H is 50 kHz wide, which is much broader than that observed 25–35 kHz in PECVD a-Si:H films. Moreover, a 0.5 kHz resonance absorption hole width due to intrinsic dipolar interactions is obtained using the hole-burning technique. Surprisingly, approximately 90 percent of the hydrogen atoms give rise to the 50 kHz line and only a very small percentage of the hydrogen atoms give rise to the much narrower resonance line.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Staebler, D.L. and Wronski, C.R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
2. Yang, L. and Chen, L., Appl. Phys. Lett. 63 400 (1993); Amorphous Silicon Technology, edited by E. A. Schiff, M. Hack, A. Madan, M. Powell, A. Matsuda, (MRS Symp. Proc. 336, 1994), pp. 669–674.Google Scholar
3. Vik Dalal, L., Kaushal, S., Knox, R., Han, K., and Martin, F., 16th ICAS Proc. to be published in J. Non-Cryst. Sol. (1995).Google Scholar
4. Mahan, A. H., Carapella, J., Nelson, B. P., Crandall, R. S., and Balberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
5. Vanecek, M., Mahan, A. H., Nelson, B. P., Crandall, R. S., Proc. 11th European Photovoltaic Solar Energy Conf., edited by Guimaraes, L., Palz, W., Dereyff, C., Kiess, H., and Helm, P. (Harwood Acad. Publ., Switzerland, 1993), p. 96.Google Scholar
6. Kwon, D., Cohen, J. D., Nelson, B. P., and Iwaniczko, E., in Amorphous Silicon Technology, edited by Schiff, E. A., Hack, M., Madan, A., Powell, M., Matsuda, A., (MRS. Symp. Proc. 377, 1995), pp. 301306.Google Scholar
7. Vanecek, M., Mahan, A. H., Nelson, B. P.,, and Crandall, R. S., Proc. 12th Europ. PV Solar Energy Conference, (April 1994, Amstedam, the Netherlands), p.354.Google Scholar
8. Fritzsche, H., J. Non-Cryst. Sol. 190, 180 (1995).Google Scholar
9. Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B 32, 23 (1985).Google Scholar
10. Street, R. A., Kakalios, J., Tsai, C. C. and Hayes, T. M., Phys. Rev. B 35, 1316 (1987).Google Scholar
11. Williamson, D. L., in Amorphous Silicon Technology, edited by Schiff, E. A., Hack, M., Madan, A., Powell, M., Matsuda, A., (MRS Symp. Proc. 377, 1995), pp. 251262 Google Scholar
12. Reimer, J. A. and Petrich, M. A., in Amorphous Silicon and Related Materials, edited by Fritzsche, H. (World Scientific Co. Singapore, 1989), pp. 327.Google Scholar
13. Taylor, P.C., in Semiconductors and Semimetals, vol.21C Hydrogenated Amorphous Silicon, edited by Pankove, J. I. (Academic Press, Inc. 1984), p. 99.Google Scholar
14. Baum, J., Gleason, K. K., Pines, A., Garroway, A. N., and Reimer, J. A., Phys. Rev. Lett. 56, 1377 (1986); K. K. Gleason, M. A. Petrich, and J. A. Reimer, Phys. Rev. B 36, 3259 (1987).Google Scholar
15. Reimer, J. A. and Vaughan, Robet W., Solid State Commun. 37 161 (1981).Google Scholar
16. Beyer, W. and Wagner, H., J. Non-Cryst. Sol. 59/60, 161 (1983).Google Scholar
17. Shimizu, T., Nakazawa, K., Kumeda, M., and Ueda, S., Japanese J. Appl. Phys., 21, L351 (1982); T. Shimizu, J. Non-Cryst. Sol. 59/60, 117 (1983); M. Kumeda, H. Komatsu, T. Shimizu, N. Fukuda and N. Kitagawa, Jpn. J. Appl. Phys. 24, L495 (1985).Google Scholar
18. Lucovsky, G., Nemanich, R. J., and Knights, J. C., Phys. Rev. B 19, 2064 (1979).Google Scholar
19. Freeman, R., A Handbook of Nuclear Magnetic Resonance, (Longman Scientific & Technical, Essex, UK, 1988), p. 207.Google Scholar
20. Baum, J., Gleason, K. K., Pines, A., Garroway, A.N., and Reimer, J. A., Phys. Rev. Lett. 56, 1377 (1986).Google Scholar