Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T09:04:07.886Z Has data issue: false hasContentIssue false

Hydrogen Diffusion in Boron-Doped Silicon

Published online by Cambridge University Press:  25 February 2011

C.P. Herrero
Affiliation:
Instituto de Ciencia de Materiales, Serrano 115 dpdo, 28006 Madrid, Spain
M. Stutzmann
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-7000 Stuttgart 80, Federal Republic of Germany
A. Breitschwerdt
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-7000 Stuttgart 80, Federal Republic of Germany
Get access

Abstract

Infrared reflectance spectroscopy is employed to obtain hydrogen depth profiles in boron-doped silicon, hydrogenated under various plasma conditions. From the obtained profiles, H-diffusion coefficients are calculated for different temperatures and dopant concentrations. Our results are interpreted by assuming that diffusion in the bulk is limited by trapping at the acceptor sites. A binding energy of 0.6 eV is deduced for B-H pairs. We also analyze the influence of a bias applied to the sample on the hydrogenation process. This sample bias can favor or completely hinder the diffusion of hydrogen into the silicon bulk. Also, a surface oxide layer can drastically inhibit the hydrogen in-diffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pearton, S.J., in Proc. 13th Int. Conf. Defects in Semicond., edited by Kimerling, L.C., and Parsey, J.M. Jr., (Metallurgical Soc. AIME, Wavendale, PA, 1985) 14a, 737.Google Scholar
2 Van de Walle, C.G., Denteneer, P.J.H., Bar-Yam, Y., and Pantelides, S.T., Phys. Rev. B 39, 10791 (1989).Google Scholar
3 Pankove, J.I., Carlson, D.E., Berkeyheiser, J.E., and Wance, R.O., Phys. Rev. Lett. 51, 2224 (1983).Google Scholar
4 Mikkelsen, J.C. Jr., Appl. Phys. Lett. 46, 882 (1985).Google Scholar
5 Corbett, J.W., Lindström, J.L., and Pearton, S.J., in Defects in Electronic Materials, edited by Stavola, M., Pearton, S.J., and Davis, G.A. (Mater. Res. Soc. Proc. 104, Pittsburg, PA 1988) pp. 229239.Google Scholar
6 Capizzi, M. and Mittiga, A., Appl. Phys. Lett. 50, 918 (1987).Google Scholar
7 Liou, L.L., Spitzer, W.G., Zavada, J.M., and Jenkinson, H.A., J. Appl. Phys. 59, 1936 (1986).Google Scholar
8 Stutzmann, M., Phys. Rev. B 35, 5921 (1987).Google Scholar
9 Herrero, C.P. , Stutzmann, M., Breitschwerdt, A., and Santos, P.V., Phys. Rev. B , in press.Google Scholar
10 Johnson, N.M., Phys. Rev. B 31, 5525 (1985).Google Scholar
11 Johnson, N.M., Ponce, F.A., Street, R.A., and Nemanich, R.J., Phys. Rev. B 35, 4166 (1987).Google Scholar
12 Aspnes, D.E. and Studna, A., Phys. Rev B 27, 985 (1983).Google Scholar
13 Fedders, P.A., Phys. Rev. B 16, 4769 (1977).Google Scholar