Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T15:54:41.150Z Has data issue: false hasContentIssue false

Hydrogen Bonding in ZnO

Published online by Cambridge University Press:  17 March 2011

N. H. Nickel
Affiliation:
Hahn-Meitner-Institut Berlin Kekuléstr. 5, D-12489 Berlin, Germany
K. Brendel
Affiliation:
Hahn-Meitner-Institut Berlin Kekuléstr. 5, D-12489 Berlin, Germany
Get access

Abstract

Hydrogen effusion measurements reveal that the total hydrogen concentration in ZnO ranges from 5.2×1016 cm−3 for single crystal ZnO to 3×1021 cm−3 for polycrystalline ZnO thin-fims. From the H effusion spectra the hydrogen chemical potential is determined as a function of the H concentration that can be related th the H density-of-states distribution. Single crystal ZnO exhibiting the lowest H concentration reveals six peaks in the H density-of-states located between 0.59 and 1.4 eV below the H transport site. With increasing H concentration the amount of H accommodated with binding energies larger than 1.0 eV increases significantly.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Walle, C. G. Van de, Phys. Rev. Lett. 85, 1012 (2000).Google Scholar
2. Cox, S. F. J., Davis, E. A., Cottrell, S. P., King, P. J. C., Lord, J. S., Gil, J. M., Alberto, H. V., Vilao, R. C., Duarte, J. Pironto, Campos, N. Ayres de, Weidinger, A., Lichti, R. L., and Irvine, S. J. C., Phys. Rev. Lett. 86, 2601 (2001).Google Scholar
3. Hofmann, D. M., Hofstaetter, A., Leiter, F., Zhou, H., Henecker, F., Meyer, B. K., Orlinskii, S. B., Schmidt, J., and Baranov, P. G., Phys. Rev. Lett. 88, 045504 (2002).Google Scholar
4. Look, D. C., Reynolds, D. C., Sizelove, J. R., Jones, R. L., Litton, C. W., Cantwell, G., and Harsch, W. C., Solid State Commun. 105, 399 (1998).Google Scholar
5. Nickel, N. H. and Fleischer, K., Phys. Rev. Lett. 90, 197402 (2003).Google Scholar
6. Bozzelli, J. W. and Barat, R. B., Plasma Chem. Plasma Process. 8, 293 (1983).Google Scholar
7. Roychowdhury, S., Roychowdhury, U. K., and Venugopalan, M., Plasma Chem. Plasma Process. 2, (1982).Google Scholar
8. Beyer, W., in Hydrogen in Semiconductors II, edited by Nickel, N. H. (Academic Press, San Diego, 1999), Vol. 61, p. 165.Google Scholar
9. Jackson, W. B., Franz, A. J., Jin, H.-C., Abelson, J. R., and Gland, J. L., J. Non-Cryst. Sol. 227–230, 143 (1998).Google Scholar