Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:51:35.205Z Has data issue: false hasContentIssue false

Hybrid Valence Bands in Strained-Layer Heterostructures grown on Relaxed SiGe Virtual Substrates

Published online by Cambridge University Press:  02 August 2011

Minjoo L. Lee
Affiliation:
Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139, USA
Eugene A. Fitzgerald
Affiliation:
Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139, USA
Get access

Abstract

The use of alternative channel materials such as germanium [1,2] and strained silicon (ε-Si) [3-5] is increasingly being considered as a method for improving the performance of MOSFETs. While ε-Si grown on relaxed Si1-xGex is drawing closer to widespread commercialization, it is currently believed that almost all of the performance benefit in CMOS implementations will derive from the enhanced mobility of the n-MOSFET [5]. In this paper, we demonstrate that ε-Si p-MOSFETs can be engineered to exhibit mobility enhancements that increase or remain constant as a function of inversion density. We have also designed and fabricated ε-Si / ε-Ge dual-channel p-MOSFETs exhibiting mobility enhancements of 10 times. These p-MOSFETs can be integrated on the same wafers as ε-Si n-MOSFETs, making symmetric-mobility CMOS possible.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chui, C. O., Kim, H., Chi, D., Triplett, B. B., McIntyre, P. C., and Saraswat, K. C., in Proceedings of the IEEE International Electron Device Meeting, San Francisco, CA., 2002.Google Scholar
2. Shang, H., Schmidt-Okorn, H., Chan, K., Copel, M., Ott, J., Kozlowski, P. M., Steen, S. E., Cordes, S. A., Wong, H.-S., Jones, E. C., and Haensch, W. E., in Proceedings of the IEEE International Electron Device Meeting, San Francsico, CA., 2002.Google Scholar
3. Leitz, C. W., Currie, M. T., Lee, M. L., Cheng, Z. Y., Antoniadis, D. A., and Fitzgerald, E. A., Journal of Applied Physics 92, 37453752 (2002).Google Scholar
4. Currie, M. T., Leitz, C. W., Langdo, T. A., Taraschi, G., Antoniadis, D. A., and Fitzgerald, E. A., J. Vac. Sci. Technol. B 19, 22682279 (2001).Google Scholar
5. Rim, K., Chu, J., Chen, H., Jenkins, K. A., Kanarsky, T., Lee, K., Mocuta, A., Zhu, H., Roy, R., Newbury, J., Ott, J., Petrarca, K., Mooney, P., Lacey, D., Koester, S., Chan, K., Boyd, D., Ieong, M., and Wong, H.-S., in 2002 Symposium on VLSI Technology Digest of Technical Papers, 2002.Google Scholar
6. Lee, M. L., Cheng, Z.-Y., Leitz, C. W., Pitera, A. J., Langdo, T. A., Currie, M. T., Taraschi, G., Fitzgerald, E. A., and Antoniadis, D. A., Applied Physics Letters 79, 33443346 (2001).Google Scholar
7. Lee, M. L. and Fitzgerald, E. A., submitted to Journal of Applied Physics (2003).Google Scholar
8. Rim, K., Welser, J., Hoyt, J. L., and Gibbons, J. F., IEEE IEDM Tech. Dig., 517519 (1995).Google Scholar
9. Nayak, D. K., Goto, K., Yutani, A., Murota, J., and Shiraki, Y., IEEE Transactions on Electron Devices 43, 17091716 (1996).Google Scholar
10. Leitz, C. W., Currie, M. T., Lee, M. L., Z.-Y. Cheng, Antoniadis, D. A., and Fitzgerald, E. A., Applied Physics Letters 79, 42464248 (2001).Google Scholar
11. Fischetti, M. V. and Laux, S. E., J. Appl. Phys. 80, 22342252 (1996).Google Scholar
12. Lee, M. L. and Fitzgerald, E. A., submitted to Applied Physics Letters (2002).Google Scholar