Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:48:02.016Z Has data issue: false hasContentIssue false

Hot Exciton Dissociation at Organic Interfaces

Published online by Cambridge University Press:  20 June 2013

G. Grancini*
Affiliation:
Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3 20133 Milano, Italy.
D. Fazzi
Affiliation:
Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3 20133 Milano, Italy.
M. Maiuri
Affiliation:
IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy.
A. Petrozza
Affiliation:
Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3 20133 Milano, Italy.
H-J. Egelhaaf
Affiliation:
BELECTRIC OPV GmbH, Landgrabenstrasse 94, 90443 Nürnberg, Germany.
D. Brida
Affiliation:
IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy.
G. Cerullo
Affiliation:
IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy.
G. Lanzani*
Affiliation:
Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3 20133 Milano, Italy.
Get access

Abstract

Interface physics is at the heart of organic photovoltaics (OPV). Here we reveal for the first time the actual charge generation mechanism in a low-band-gap polymer: fullerene blend as prototypical system for efficient OPV. We demonstrate that the photogenerated excitons dissociate into bound interfacial charge transfer states (CTS) and free charges in 20-50 fs, with a branching ratio that depends on the excess energy. Providing an excess energy, high energy singlet polymer states are excited, giving a direct hot electron transfer into the interfacial hot CTS* before internal energy dissipation occurs. This process ultimately leads to a higher fraction of free charges. Thanks to strong electronic coupling between high-energy-states and hot CTS, we demonstrate the opening of additional paths for charge generation that would otherwise be quenched by internal conversion to the lowest-lying states. Our results provide a new framework to understand charge generation in OPV system, suggesting that hot dissociation is a strategic option to enhance the photovoltaic conversion.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Clarke, T. M. & Durrant, J. R. Chem. Rev. 110, 67366767 (2010).CrossRefGoogle Scholar
Brida, D. et al. . Opt. Express 17, 1251012515 (2009).CrossRefGoogle Scholar
Liu, T., Troisi, A., J. Phys chem. C 115, 24062415 (2011); Yuanping Y., Coropceanu V. Bredas, J. L., J. Mater. Chem., 21, 1479-1486(2011).CrossRefGoogle Scholar
Kakali, S., Crespo-Otero, R., Weingart, O., Thiel, W., Barbatti, M., J. Chem. Theo. Comp., 9, 533543 (2013).Google Scholar
Grancini, G. et al. . J. Phys. Chem. C 116, 98389844 (2012).CrossRefGoogle Scholar
Jamieson, F. C., Domingo, E. B., McCarthy-Ward, T., Heeney, M., Stingelin, N. and Durrant, J. R. Chem. Sci., 3, 485 (2012).CrossRefGoogle Scholar
Grancini, G., Maiuri, M., Fazzi, D., Petrozza, A., Egelhaaf, H-J., Brida, D., Cerullo, G. and Lanzani, G., Nature Materials 12, 2933 (2013).CrossRefGoogle Scholar
Jarzab, D. et al. . Adv. Energy Mater. 1, 604610 (2011).CrossRefGoogle Scholar
Etzold, F. et al. . J. Am. Chem. Soc. 134, 1056910583 (2012).CrossRefGoogle Scholar
Hwang, I. W. et al. . Adv. Mater. 19, 23072312 (2007).CrossRefGoogle Scholar
Di Nuzzo, D. et al. .Adv. Mater. 22, 43214324 (2010).CrossRefGoogle Scholar