Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:26:28.288Z Has data issue: false hasContentIssue false

High-Temperature Switching Characteristics of 6H-SiC Thyristor

Published online by Cambridge University Press:  15 February 2011

K. Xie
Affiliation:
US Army Research Laboratory, Physical Sciences Directorate, AMSRL-PS-DB, Fort Monmouth, NJ 07703-5000
J. R. Flemish
Affiliation:
US Army Research Laboratory, Physical Sciences Directorate, AMSRL-PS-DB, Fort Monmouth, NJ 07703-5000
T. Burke
Affiliation:
US Army Research Laboratory, Physical Sciences Directorate, AMSRL-PS-DB, Fort Monmouth, NJ 07703-5000
W. R. Buchwald
Affiliation:
US Army Research Laboratory, Physical Sciences Directorate, AMSRL-PS-DB, Fort Monmouth, NJ 07703-5000
J. H. Zhao
Affiliation:
ECE Department, Rutgers University, Piscataway, NJ 08855
Get access

Abstract

A 280 V 6H-SiC thyristor has been fabricated and characterized. The switching characteristics of the SiC thyristor were investigated over a temperature range from 23 °C to 400 °C, with a switched current density of 4900 A/cm2 being observed under pulse bias condition. The thyristor has shown a dV/dt of 400 V/ms. Both the turn-on time and turn-off time increase significantly at 400 °C. The thyristor forward breakover voltage decreases by only 5% when the operating temperature is increased from 23 °C to 400 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ivanov, P.A. and Chelnokov, V. E., Semiconductors, 29, 1003 (1996).Google Scholar
2. Morkoc, H., Strite, S., Gao, G.., Lin, M. E., Sverdlov, B., and Burns, M., J. Appl. Phys., 76, 1363 (1994).Google Scholar
3. Bhatnagar, M. and Baliga, B. J., IEEE Trans. Electron Devices, 40, 645 (1993).Google Scholar
4. Palmour, J. W., Carter,Jr, C. H., Weitzel, C. E., and Nordquist, K. J., in Diamond SiC and Nitride Wide Bandgap Semiconductors, edited by Carter, C. H. Jr. et al. (Mater. Res. Soc. Proc. 339, Pittsburgh, PA, 1994), pp. 138144.Google Scholar
5. Suehle, J. S., Chaparala, P., Messick, C., Miller, W. M., and Boyko, K. C., IEEE Inter. Reliability Physics Proc., (1994), pp. 120125.Google Scholar
6. Baliga, B. J., Modem Power Devices, (Wiley, New York, 1987).Google Scholar
7. Xie, K., Zhao, J. H., Flemish, J., Burke, T., Buchwald, W., Lorenzo, G., and Singh, H., IEEE Electron Device Lett., 17, 142 (1996).Google Scholar
8. Flemish, J., Xie, K. and Zhao, J. H., Appl. Phys. Lett., 64, 2315 (1994).Google Scholar
9. Xie, K., Flemish, J. R., Zhao, J. H., Buchwald, W. and Casas, L., Appl. Phys. Lett., 67, 368 (1995).Google Scholar
10. Neudeck, P. G. and Powell, J. A., IEEE Electron Device Letters, 15, 63 (1994).Google Scholar
11. Ghandhi, S. K., ”Semiconductor Power devices”, (John Wiley & Sons, 1978).Google Scholar
12. Bassett, R., Solid State Electron., 12, 385 (1969).Google Scholar
13. Wilson, P., Solid State Electron., 10, 145 (1967).Google Scholar