Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T13:11:37.718Z Has data issue: false hasContentIssue false

High-Resolution Interface Atomic Structure Analysis in Silicon Nitride Ceramics

Published online by Cambridge University Press:  01 February 2011

A. Ziegler
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
J. C. Idrobo
Affiliation:
Physics Department, University of California, Davis, CA 95616, USA
M. K. Cinibulk
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA
C. Kisielowski
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
N. D. Browning
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616, USA
R. O. Ritchie
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
Get access

Abstract

In this study we examine the immediate interface between matrix grains and the amorphous intergranular film in a Si3N4 ceramic doped with rare-earth oxides La2O3, Sm2O3, Er2O3, Yb2O3 and Lu2O3, extracting unique structural and atomic bonding information. In particular, we relate the structure of the interface to the ionic size and electronic structure of the rare-earth elements and the presence of oxygen in the intergranular film. We relate these results to the measured fracture toughness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sun, E. Y., Becher, P. F., Plucknett, K. P., Hsueh, C. H., Alexander, K. B., Waters, S. B., Hirao, K. and Brito, M. E., J. Am. Ceram. Soc. 81, 28312840 (1998).Google Scholar
2. Lange, F. F., Davis, B. I. and Metcalf, , J. Mat. Sci. 18 14971505 (1983).Google Scholar
3. Krämer, M., Hoffmann, M. J. and Petzow., G., J. Am. Ceram. Soc. 76 27782784 (1993).Google Scholar
4. Clarke, D.R., J. Am. Ceram. Soc. 70 1522 (1987).Google Scholar
5. Kleebe, H.J., Cinibulk, M.K., Cannon, R.M. and Rühle, M., J. Am. Ceram. Soc. 76 19691977 (1993).Google Scholar
6. Wang, C. M, Pan, X., Hoffmann, M. J., Cannon, R. M. and Rühle, M., J. Am. Ceram. Soc. 79 788792 (1996).Google Scholar
7. Tanaka, I., Kleebe, H. J., Cinibulk, M. K., Bruley, J., Clarke, D. R. and Rühle, M., J. Am. Ceram. Soc. 77 911914 (1994).Google Scholar
8. Ziegler, A., Kisielowski, C., Hoffmann, M. J. and Ritchie, R. O., J. Am. Ceram. Soc. 86 17771785 (2003).Google Scholar
9. Shibata, N., Pennycook, S. J., Gosnell, T. R., Painter, G. S., Shelton, W. A. and Becher, P. F., Nature 428 730733 (2004).Google Scholar
10. Cinibulk, M. K., Thomas, G. and Johnson, S. M., J. Am. Ceram. Soc. 75 20502055 (1992).Google Scholar
11. Sanders, W. A. and Mieskowski, D. M., J. Am. Ceram. Soc., 64 304309 (1985).Google Scholar
12. Browning, N. D., Chisholm, M. F. and Pennycook, S. J., Nature 366 143146 (1993).Google Scholar
13. Lawn, B. R., Fracture of Brittle Solids, 2nd edition, Cambridge Univ. Press, Cambridge, UK (1993).Google Scholar
14. Nellist, P.D. and Pennycook, S. J., Ultramicroscopy 78 111124 (1999).Google Scholar
15. Pennycook, S. J. and Jesson, D. E., Phys. Rev. Lett. 64 939941 (1990).Google Scholar
16. Nakayasu, T., Yamada, T., Tanaka, I., Adachi, H. and Goto, S., J. Am. Ceram. Soc. 81 565570 (1998).Google Scholar
17. Yoshiya, M., Tatsumi, K., Tanaka, I. and Adachi., H., J. Am. Ceram. Soc. 85 109112 (2002).Google Scholar
18. Benco, L’., Hafner, J., Lencés, Z. and Sajgalík, P., J. Am. Ceram. Soc. 86 11621167 (2003).Google Scholar
19. Tanaka, I., Nasu, S., Adachi, H., Miyamoto, Y. and Niihara, K., Acta Met. Mat. 40 19952001 (1992).Google Scholar
20. Ching, W.-Y., Huang., M. Z. and Mo, S. D., J. Am. Ceram. Soc. 83 780786 (2000).Google Scholar
21. Garofalini, S. H. and Luo, W., J. Am. Ceram. Soc. 86 17411752 (2003).Google Scholar
22. Swanson, P. L., Fairbanks, C. J., Lawn, B. R., Mai, Y. W. and Hockey, B. J., J. Am. Ceram. Soc. 70 279–89 (1987).Google Scholar
23. Rödel, J., Kelly, J. F. and Lawn, B. R., J. Am. Ceram. Soc. 73 3313–18 (1990).Google Scholar
24. Dauskardt, R. H., Acta Met. Mat. 41 2765–81 (1993).Google Scholar
25. Tanaka, I, Pezzotti, G., Okamoto, T., Miyamoto, Y. and Koizumi, M., J. Am. Ceram. Soc. 72 16561660 (1989).Google Scholar
26. Ziegler, A., McNaney, J. M., Hoffmann, M. J. and Ritchie, R. O., J. Am. Ceram. Soc. (2004) in review.Google Scholar