Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:37:29.191Z Has data issue: false hasContentIssue false

High-Quality AlGaN/GaN Grown on Sapphire by Gas-Source Molecular Beam Epitaxy using a Thin Low-Temperature AlN Layer

Published online by Cambridge University Press:  03 September 2012

M. J. Jurkovic
Affiliation:
Department of Electrical Engineering, Columbia University, New York, NY, 10027
L.K. Li
Affiliation:
Department of Electrical Engineering, Columbia University, New York, NY, 10027
B. Turk
Affiliation:
Department of Electrical Engineering, Columbia University, New York, NY, 10027
W. I. Wang
Affiliation:
Department of Electrical Engineering, Columbia University, New York, NY, 10027
S. Syed
Affiliation:
Department of Physics, Columbia University, New York, NY, 10027
D. Simonian
Affiliation:
Department of Physics, Columbia University, New York, NY, 10027
H. L. Stormer
Affiliation:
Department of Physics, Columbia University, New York, NY, 10027
Get access

Abstract

Growth of high-quality AlGaN/GaN heterostructures on sapphire by ammonia gassource molecular beam epitaxy is reported. Incorporation of a thin AlN layer grown at low temperature within the GaN buffer is shown to result in enhanced electrical and structural characteristics for subsequently grown heterostructures. AlGaN/GaN structures exhibiting reduced background doping and enhanced Hall mobilities (2100, 10310 and 12200 cm2/Vs with carrier sheet densities of 6.1 × 1012 cm−2, 6.0 × 1012 cm−2, and 5.8 × 1012 cm−2 at 300 K, 77 K, and 0.3 K, respectively) correlate with dislocation filtering in the thin AlN layer. Magnetotransport measurements at 0.3 K reveal well-resolved Shubnikov-de Haas oscillations starting at 3 T.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, A. R., Feenstra, R. M., Greve, D. W., Shin, M.-S., Skowronski, M., Neugebauer, J., Northrup, J. E., Appl. Phys. Lett., 72, 2114 (1998).Google Scholar
2. Khan, M. A., Chen, Q., Shur, M. S., Dermott, B. T., Higgins, J. A., Burm, J., Schaff, W., Eastman, L. F., Electron. Lett., 32, 357, (1996).Google Scholar
3. Wu, Y.-F., Keller, B. P., Fini, P., Keller, S., Jenkins, T. J., Kehias, L. T., Denbaars, S. P., Mishra, U. K., Electron Dev. Lett., 19, 50 (1998).Google Scholar
4. Li, R., Cai, S. J., Wong, L., Chen, Y., Wang, K. L., Smith, R. P., Martin, S. C., Boutros, K. S., Redwing, J. M., Electron Dev. Lett., 20, 323 (1999).Google Scholar
5. Sheppard, S. T., Doverspike, K., Pribble, W. L., Allen, S. T., Palmour, J. W., Kehias, L. T., Jenkins, T. J., Electron Dev. Lett., 20, 161 (1999).Google Scholar
6. Gaska, R., Shur, M.S., Bykhovski, A. D., Orlov, A. O., Snider, G. L., Appl. Phys. Lett, 74, 287 (1999).Google Scholar
7. Wang, T., Ohno, Y., Lachab, M., Nakagawa, D., Shirahama, T., Sakai, S., Ohno, H., Appl. Phys. Lett., 74, 3531 (1999).Google Scholar
8. Elsass, C. R., Smorchkova, I. P., Heying, B., Haus, E., Fini, P., Maranowski, K., Ibbeston, J. P., Keller, S., Petroff, P. M., Denbaars, S. P., Mishra, U. K., Speck, J. S., Appl. Phys. Lett., 74, 3528 (1999).Google Scholar
8. Smorchkova, I. P., Elsass, C. R., Ibbeston, J. P., Vetury, R., Heying, B., Fini, P., Haus, E., Denbaars, S. P., Speck, J. S., Mishra, U. K., J. Appl. Phys., 86, 4520 (1999).Google Scholar
10. Li, L. K., Alperin, J., Wang, W. I., Look, D. C., Reynolds, D. C., J. Vac. Sci. Technol. B, 16, 1275 (1998).Google Scholar
11. Webb, J. B., Tang, H., Rolfe, S., Bardwell, J. A., Appl. Phys. Lett., 75, 953 (1999).Google Scholar
12. Amano, H., Iwaya, M., Kashima, T., Katsuragawa, M., Akasaki, I., Han, J., Hearne, S., Floro, J. A., Chason, E., Figiel, J., Jpn. Journ. Appl. Phys., Part 2, 37, L1540 (1998).Google Scholar
13. Wang, W. I., Appl. Phys. Lett., 44, 1149 (1984).Google Scholar
14. Harris, J. S., Koch, S. M., Rosner, S. J., Mater. Res. Soc. Symp. Proc., 91, 3 (1987).Google Scholar
15. Kroemer, H., J. Crystal Growth, 81, 193 (1987).Google Scholar
16. Amano, H., Sawaki, N., Akasaki, I., Toyoda, Y., Appl. Phys. Lett., 48, 353 (1986).Google Scholar
17. Renolds, D. C., Look, D. C., J. Appl. Phys., 80, 594 (1996).Google Scholar
18. Zeng, K. C., Lin, J. Y., Jiang, H. X., Yang, W., Appl. Phys. Lett., 74, 3821 (1999).Google Scholar