Article contents
High-Performance Amorphous Silicon Emitter for Crystalline Silicon Solar Cells
Published online by Cambridge University Press: 01 February 2011
Abstract
Thin hydrogenated amorphous silicon (a-Si:H) layers deposited by hot-wire chemical vapor deposition (HWCVD) are studied for use as the emitter in silicon heterojunction (SHJ) solar cells on p-type crystalline silicon wafers. Low interface recombination velocity and high open-circuit voltage are achieved by a low substrate temperature (<150°C) intrinsic a-Si:H deposition which ensures immediate amorphous silicon deposition. This is followed by deposition of n-type a-Si:H at a higher temperature (>200°C) which improves dopant activation and other properties. A prolonged atomic H pretreatment to clean the c-Si surface is actually detrimental because it creates additional defects in the c-Si lattice. However, a brief H pretreatment is beneficial and may render the intrinsic interlayer unnecessary. The n-type a-Si:H thickness must be limited to ~5 nm to minimize current loss, because the phosphorous doped a-Si:H layer has significant absorption in the usable solar spectrum. Using the optimized a-Si:H emitter, we obtain efficiency of nearly 17% on planar float-zone (FZ) silicon and 15% on planar Czochralski (CZ) silicon substrates with aluminum back-surface-field (Al-BSF) and contacts.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005
References
- 2
- Cited by