Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:34:58.024Z Has data issue: false hasContentIssue false

Highly Emissive Lanthanide Compounds in Sol-Gel Derived Materials

Published online by Cambridge University Press:  21 February 2011

Ronald B. Lessard
Affiliation:
Departments of Chemistry and Agricultural Engineering, and the Center for Fundamental Materials Research at Michigan State University, East Lansing, MI 48824
Kris A. Berglundl
Affiliation:
Departments of Chemical Engineering and Agricultural Engineering, and the Center for Fundamental Materials Research at Michigan State University, East Lansing, MI 48824
Daniel G. Nocera
Affiliation:
Departments of Chemistry and Agricultural Engineering, and the Center for Fundamental Materials Research at Michigan State University, East Lansing, MI 48824
Get access

Abstract

Molecular composites that possess unique emission properties have been prepared by introducing luminescent molecules into sol-gel based silica glasses. The lumophores chosen for study are terbium(III) and europium(III) ions whose emissions are quenched in aqueous and sol-gel environments owing to coordination of water molecules to the lanthanide ion. To overcome the quenching process the ions have been encapsulated within cryptands. The resulting terbium(IU) and europium(III) cryptates possess long-lived excited states in both aqueous solution and solgel glassy matrices. Measurements of the excited state dynamics of these molecularly engineered composites demonstrate the feasibility of tailoring molecules to retain their excited state properties in sol-gel derived glasses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brittain, H. G., in Molecular Lminescence Spectroscopy Methods and Applications: Part 2, Chemical Analysis Series, vol.77, edited by Schulman, S. G. (John Wiley & Sons, New York, 1988) p.401.Google Scholar
2. Urbain, G., Ann. Chim. Phys. (Paris), 18, 222, 289 (1909).Google Scholar
3. Levine, A. K. and Palilla, F. C., Appl. Phys. Lett., 5, 118 (1964).Google Scholar
4. Avouris, P., Chang, I. F., Duvigneaud, P. H., Giess, E. A. and Morgan, T. N., J. Lumin., 26, 213 (1982).Google Scholar
5. Bril, A., Blasse, G., Gomes de Mesquita, A. H. and dePoorter, J. A., Philips Tech. Rev., 32, 125 (1971).Google Scholar
6. Palilla, F. C., Levine, A. K. and Rinkevics, M., J. Electrochem. Soc., 112, 776 (1965).Google Scholar
7. Pruett, D. J., Ph.D. Dissertation, Michigan State University, 1978.Google Scholar
8. Gansow, O. A., and Triplett, K. B., US Patent 4 257 955 (24 March 1981).Google Scholar
9. Sol-gel materials have been prepared by the procedure described in the Experimental Part B in Lessard, R. B., Wallace, M. M., Oertling, W. A., Chang, C. K., Berglund, K. A. and Nocera, D. G., these procedings.Google Scholar
10. Mussell, R. D. and Nocera, D. G., J. Am. Chem. Soc. 110, 2764 (1988).Google Scholar
11. Newsham, M. D., Giannelis, E. P., Pinnavaia, T. J. and Nocera, D. G., J. Am. Chem. Soc., 110, 3885 (1988).Google Scholar
12. Turro, N. J., in Modern Molecular Photochemistry (Benjamin/Cummings, Menlo Park, CA, 1978).Google Scholar
13. Lessard, R. B., Ph.D. Dissertation, Wayne State Univeristy, Detroit, Michigan, 1988.Google Scholar
14. Fucaloro, A. F., Forster, L. S., Rund, J. V. and Lin, S. H., J. Phys. Chem. 87, 1796 (1983).Google Scholar
15. Forster, L. S. and Mønsted, O., J. Phys. Chem. 90, 5131 (1986).Google Scholar
16. Ghaith, A. M., Forster, L. S. and Rund, J. V., Inorg. Chem. 26, 2493 (1987).Google Scholar
17. Mvele, M. and Wasgestian, F., Inorg. Chim. Acta, 119, 25 (1986).Google Scholar
18. Ditze, A. and Wasgestian, F., Ber. Bunsen-Ges. Phys. Chem. 90, 111 (1986).Google Scholar
19. Ryu, C. K., Lesssard, R. B., Lynch, D. and Endicott, J. F., J. Phys. Chem., 93, 1752 (1989).Google Scholar
20. Endicott, J. F., Ramasami, T., Tamilarasan, R., Lessard, R. B., Ryu, C. K. and Brubaker, G. R., Coord. Chem. Rev., 77, 1 (1987).Google Scholar
21. Horrocks, W. DeW. Jr and Sudnick, D. R., Acc. Chem. Res., 14, 384 (1981).Google Scholar
22. Horrocks, W. DeW. Jr, in Progress in Inorganic Chemistry, vol.31, edited by Lippard, S. J. (John Wiley & Sons, New York, 1984) p. 1.Google Scholar
23. Haas, Y. and Stein, G., J. Phys. Chem., 75, 3677 (1971).Google Scholar
24. Sinha, S. P., in Systematics and the Properties of the Lanthanides, NATO ASI Series No. 109, Edited by Sinha, S. P. (D. Reidel, Dordrecht, 1983) p. 451.Google Scholar
25. Alpha, B., Balzani, V., Lehn, J-M., Perathoner, S. and Sabbatini, N., Angew. Chem., Int. Ed. Engl. 26, 1266 (1987).Google Scholar
26. Stein, G. and Wurzberg, E., J. Chem. Phys. 62, 208 (1975).Google Scholar
27. Sabbatini, N., Dellonte, S., Ciano, M., Bonazzi, A. and Balzani, V., Chem. Phys. Lett., 107, 212 (1984).Google Scholar
28. Sabbatini, N., Dellonte, S. and Blasse, G., Chem. Phys. Lett., 129, 541 (1986).Google Scholar
29. Sinha, S. P., in Complexes of the Rare Earths (Pergamon Press, Oxford, 1966) pp. 145,148.Google Scholar