Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:43:27.595Z Has data issue: false hasContentIssue false

Highly Efficient Silver Nanoparticle Formation on Dialdehyde-Modified DNA

Published online by Cambridge University Press:  01 February 2011

Christian Thomas Wirges
Affiliation:
[email protected], LMU Munich, Chemistry and Biochemistry, Carell lab, Butenandtstr. 5-13, Haus F, Munich, 81377, Germany
Jan Timper
Affiliation:
[email protected], RWTH Aachen, Institute of Inorganic Chemistry, Landoltweg 1, Aachen, 52074, Germany
Ulrich Simon
Affiliation:
ulrich.simon-nicht Teil der [email protected], RWTH Aachen, Institute of Inorganic Chemistry, Landoltweg 1, Aachen, 52074, Germany
Thomas Carell
Affiliation:
[email protected], LMU Munich, Department of Chemistry and Biochemistry, Butenandtstr. 5-13, Haus F, Munich, 81377, Germany
Get access

Abstract

We investigated the efficient nucleation of silver nanoparticles on aldehyde-modified DNA strands. The aldehyde-bearing DNA was prepared by PCR incorporation of diol-modified synthetic deoxyuridine derivatives and subsequent cleavage of the diol groups to aldehyde functions using sodium periodate. Formerly unavailable dialdehyde-bearing DNA could be prepared by this mild and selective method. Both dialdehyde-DNA and monoaldehyde-DNA are capable of inducing silver nanoparticle formation without the addition of any external reductant. Interestingly, dialdehyde-DNA shows a different kinetic behavior and is about four times as efficient in silver nanoparticle formation as monoaldehyde-DNA. These data suggest a potentially unique mechanism of silver nanocluster formation induced by the dialdehyde groups. SEM measurements of fully metallized DNA strands show homogeneous metal coverage and selective metal deposition exclusively on the DNA template.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. a) Henglein, A., Chem. Rev. 89, 18611873 (1989); b) G. Schmid, Chem. Rev. 92, 1709-1727 (1992); c) A. Roucoux, J. Schulz and H. Patin, Chem. Rev. 102, 3757-3778 (2002).Google Scholar
2. Tani, T., Photographic Sensitivity (Oxford University Press, Oxford, 1995).Google Scholar
3. Schmid, G. and Simon, U., Chem. Commun. 44, 697710 (2005).Google Scholar
4. Niemeyer, C., Angew. Chem. Int. Ed. 40, 41284158 (2001).Google Scholar
5. a) Berti, L., Alessandrini, A. and Facci, P., J. Am. Chem. Soc. 127, 1121611217 (2005); b) Y. Weizmann, F. Patolsky, I. Popov and I. Willner, Nano Lett. 4, 787-792 (2004); c)W. E. Ford, O. Harnack, A. Yasuda and J. Wessels, Adv. Mat. 13, 1793-1797 (2001).Google Scholar
6. a) Petty, J. T., Zheng, J., Hud, N. V. and Dickson, R. M., J. Am. Chem. Soc. 126, 52075212 (2004); b) C. M. Ritchie, K. R. Johnsen, J. R. Kiser, Y. Antoku, R. M. Dickson and J. T. Petty, J. Phys. Chem. C 111, 175-181 (2007).Google Scholar
6. a) Braun, E., Eichen, Y., Sivan, U., Ben-Yoseph, G., Nature 391, 775778 (1998); b) K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan and E. Braun, Science 297, 72-75 (2002).Google Scholar
8. a) Burley, G. A., Gierlich, J., Mofid, M. R., Nir, H., Tal, S., Eichen, Y. and Carell, T., J. Am. Chem. Soc. 128, 13981399 (2006); b) M. Fischler, U. Simon, H. Nir, Y. Eichen, G. A. Burley, J. Gierlich, P. M. E. Gramlich and T. Carell, Small 3, 1049-1055 (2007).Google Scholar
9. a) Henglein, A., Chem. Phys. Lett. 154, 473476 (1989); b) B. G. Ershov, A. Henglein, J. Phys. Chem. B 102, 10663-10666 (1998).Google Scholar
10. Gierlich, J., Gutsmiedl, K., Gramlich, P. M. E., Schmidt, A., Burley, G. A., Carell, T., Chem. Eur. J., in press.Google Scholar
11. Evanoff, D. D., Chumanov, G. J., J. Phys. Chem. B, 108, 1394813956 (2004).Google Scholar