Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:28:02.811Z Has data issue: false hasContentIssue false

High-Energy Elevated Temperature Si and Room Temperature B Implants in InP

Published online by Cambridge University Press:  26 February 2011

R. K. Nadella
Affiliation:
Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030.
J. Vellanki
Affiliation:
Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030.
M. V. Rao
Affiliation:
Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030.
Get access

Abstract

High-energy (3 MeV) Si implantations were performed in InP:Fe at an elevated temperature of 200 °C for fluences 8×1014, 2×1015, and 5×1015 cm“2. For the 8×1014 cm−2 fluence, an activation of 82 %, carrier mobility of 1200 cm2/V-s, a peak carrier concentration of 9×1018 cm−3, and lattice quality comparable to that of virgin crystal were obtained. No amorphization takes place for any of the fluences used. Boron compensation implantations were performed in InP:Sn (n sime 2×1018 cm3) at room temperature in the energy range 1 to 5 MeV and fluence range 1011 to 1015 cm−2. After heat treatment, maximum resistivity of the order of 106 Ω-cm was obtained in B implanted InP.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gulwadi, S. M., Nadella, R. K., Holland, O. W., and Rao, M. V., J. of Electron. Mater. 20, 615 (1991).CrossRefGoogle Scholar
2. Nadella, R. K., Rao, M. V., Simons, D. S., Chi, P. H., Fatemi, M., and Dietrich, H. B., J. Appl. Phys. 70, 1750 (1991).Google Scholar
3. Nadella, R. K., Rao, M. V., Simons, D. S., Chi, P. H., and Dietrich, H. B., J. Appl. Phys., 1 December, 1991.Google Scholar
4. Kennedy, E. F., Appl. Phys. Lett. 38, 375 (1981).Google Scholar
5. Xiong, F., Tombrello, T. A., Chen, T. R., Wang, H., Zhuang, Y. H., and Yariv, A., Nucl. Instrum. Methods, B39, 487 (1989).Google Scholar
6. Gulwadi, S. M., Rao, M. V., Simons, D. S., Holland, O. W., Hong, W-P., Caneau, C., and Dietrich, H. B., J. Appl. Physics. 69, 162 (1991).Google Scholar
7. Short, K. T. and Pearton, S. J., J. Electrochem. Soc. 135, 2835 (1988).CrossRefGoogle Scholar
8. Pearton, S. J., Abernathy, C. R., Panish, M. B., Hamm, R. A., and Lunardi, L. M., J. Appl. Phys. 66, 656 (1989).Google Scholar