Article contents
High-Density Plasma Etching of Low Dielectric Constant Materials
Published online by Cambridge University Press: 10 February 2011
Abstract
The patterning of several novel low dielectric constant (K) materials has been studied in a high-density plasma (HDP) tool. Recent results obtained on oxide-like materials, such as fluorinated oxide, hydrogen silsesquioxane (HSQ), and methyl silsesquioxane (MSQ), are reviewed. These materials can be successfully patterned using a fluorocarbon etching chemistry. The etching is in this case controlled by a thin fluorocarbon film at the surface. The patterning of polymer dielectrics can be performed in an oxygen etching chemistry. As an example, the patterning of Parylene-N in an oxygen chemistry is discussed. In this case, the ion and the oxygen radical flux need to be properly controlled to obtain a directional etching process. After the dielectric etch, either in a fluorocarbon or oxygen based chemistry, fluorocarbons and oxygen contamination remain at the exposed metal surfaces. We recently demonstrated how a plasma treatment following the dielectric etch reduces these contaminants. The results of this treatment on copper surfaces and the resulting modification to the dielectric are reviewed.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1998
References
REFERENCES
- 7
- Cited by