Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:38:50.792Z Has data issue: false hasContentIssue false

High Yield Polycarbosilane Precursors to Stoichiometric SiC. Synthesis, Pyrolysis and Application

Published online by Cambridge University Press:  21 February 2011

Leonard. V. Interrante
Affiliation:
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180–3590
C.W. Whitmarsh
Affiliation:
Starfire Systems, Inc, P.O. Box 2628, Glenville, NY 12302
W. Sherwood
Affiliation:
Starfire Systems, Inc, P.O. Box 2628, Glenville, NY 12302
H.-J. Wu
Affiliation:
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180–3590 current address: SRI International, 333 Ravenswood Ave., Meno Park, CA 94025
R. Lewis
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, CO 80523
G. Maciel
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, CO 80523
Get access

Abstract

The synthesis and properties of two polycarbosilanes that have essentially a “SiH2CH2” composition is described. One of these polymers is a highly branched hydridopolycarbosilane (HPCS) derived from Grignard coupling of CI3SiCH2CI followed by LiAIH4 reduction. This synthesis is amenable to large scale production and we are exploring applications of HPCS as a source of SiC coatings and its allyl-derivative, AHPCS, as a matrix source for SiC- and C-fiber-reinforced composites. These polymers thermoset on heating at 200-400 °C (or at 100 °C with a catalyst) and give near stoichiometric SiC with low O content in ca. 80% yield on pyrolysis to 1000 °C. The second method involves ring-opening polymerization of 1,1,3,3-tetrachlorodisilacyclobutane and yields a high molecular weight, linear polymer that can be reduced to [SiH2CH2]n (PSE), the monosilicon analog of polyethylene. In contrast to high density polyethylene which melts at 135 °C, PSE is a liquid at room temperature which crystallizes at ca. 5 °C. On pyrolysis to 1000 °C, PSE gives stoichiometric, nanocrystalline, SiC in virtually quantitative yield. The polymer-to-ceramic conversion was examined for PSE by using TGA, mass spec, solid state NMR, and IR methods yielding information regarding the cross-linking and structural evolution processes. The results of these studies of the polymer-to-ceramic conversion process and our efforts to employ the AHPCS polymer as a source of SiC matrices are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Yajima, S., Okamura, K., Hayashi, J., and Imura, M., J. Amer. Ceram. Soc. 59 [7–8] 324 (1976); S. Yajima, Y. Hasegwa, J. Hayashi, and M. Omori, J. Mater. Sci. 13[12] 2569 (1978);S. Yajima, “Silicon Carbide Fibers”, pp. 201–37, in Handbook of Composites, edited by W.Watt and B.V. Perov, North-Holland, Amsterdam, Netherlands, (1985).Google Scholar
2 Wynne, K.J. and Rice, R.W., Ann. Rev. Mater. Sci., 14, 297 (1984); R.M. Laine and F. Babonneau, Chem. Mater. 5, 260 (1993).Google Scholar
3 Okamura, K., “Ceramic Fiber and Whisker Requirements to Advanced Structural Inorganic Composite”, pp. 1934 in Advanced Structural Composites, edited by Vicenzini, P., Elsevier Science Publ. B.V., Amsterdam (1991); J. Lipowitz, Am. Ceram. Soc. Bull. 70[12], 1888 (1991); T.F. Cooke, J. Amer. Ceram. Soc.,74[12] 2959 (1991).Google Scholar
4 Hurwitz, F.I., Hyatt, L., Gorecki, J., and D'Amore, L., Ceram. Eng. Sci. Proc. 8, 732 (1987); F.I. Hurwitz, J.Z. Gyekenyesi, and P.J. Conroy, Ceram. Eng. Sci. Proc. 10, 750 (1989); H. Zhang, C.G. Pantano, pp. 223-, in Ultrastructure Processing of Advanced Materials, D.R. Uhlmann and D.R. Ulrich, Eds., John Wiley & Sons (1992).Google Scholar
5 Borom, M.P., Hillig, W.B., Singh, R.J., Morrison, W.A., and Interrante, L.V., “Fiber-Containing Composite”, US Patent No. 5 015 540 (14 May 1991).Google Scholar
6 Naslain, R. and Langlais, F., MRS Sympos. Proc. 20, 145 (1985); P.J. Lamicq, G.Q. Bernhart, M.M. Dauchier, and J.C. Mace, Am. Ceram. Soc. Bull. 65[2], 336 (1986); A.J. Caputo, D.P. Stinton, R.A. Lowden, and T.M. Bessman, Am. Ceram. Soc. Bull. 66[2], 368 (1987); T.M. Bessman, R.A. Lowden, D.P. Stinton, T.L. Starr, J. de Physique, Colloque C5, 229 (1989).Google Scholar
7 Fohey, W., Battison, M., Halada, J., and Nielson, T., U.S. Government Report No. WL-TR-92–4019, July 1992.Google Scholar
8 Strife, J.R., Wesson, J.P., and Streckert, H.H., “A Study of the Critical Factors Controlling the Synthesis of Ceramic Matrix Composites from Preceramic Polymers”, US Government Report No. AD-A23 686, December 1990; B.C. Mutsuddy, Ceramics International 13, 41 (1987); R.P. Boisvert, “Ceramic Matrix Composites via Organometallic Precursors”, M.S. Thesis, Rensselaer Polytechnic Institute, 214 pages (1988).Google Scholar
9 Wu, H-J. and Interrante, L.V., Macromolecules 25, 1840 (1992); H.-J. Wu and L.V. Interrante, Polymer Preprints 33[2], 210 (1992).Google Scholar
10 Whitmarsh, C.K., Interrante, L.V., Organometallics 10, 1336 (1991); C.K. Whitmarsh, L.V. Interrante, “Carbosilane Polymer Precursors to Silicon Carbide Ceramics”, U.S. Patent No. 5 153 295 (6 October 1992);.Google Scholar
11 Yang, C-Y. and Interrante, L.V., Polymer Preprints 33 [2], 152 (1992).Google Scholar
12 Schmidt, W.R., Sukumar, V., Hurley, W.J. Jr., Garcia, R., Doremus, R.H., and Interrante, L.V., J. Amer. Ceram. Soc. 73, 2412 (1990); W.R. Schmidt, L.V. Interrante, R.H. Doremus, T.K. Trout, P.S. Marchetti, and G.E. Maciel, Chem. Mater. 3, 257 (1991); L.V. Interrante, W.R. Schmidt, P.S. Marchetti, and Gary E. Maciel, MRS Symp. Proc. 249, 31 (1992); W.R. Schmidt, P.S. Marchetti, L.V. Interrante, W.J. Hurley, Jr., R.H. Lewis, R.H. Doremus, and G.E. Maciel, Chem. Mater. 4, 937 (1992); L.V. Interrante, C.K. Whitmarsh, T.K. Trout, and W.R. Schmidt, “Synthesis and Pyrolysis Chemistry of Polymeric Precursors to SiC and SÍ3N4”, pp. 243–254 in Organometallic Polymers with Special Properties, NATO ASI Series, Series E, Applied Sciences, Vol. 206, Kluwer Academic Publishers, Dordrecht (1992);Google Scholar
13 Interrante, L.V., Schmidt, W.R., Marchetti, P.S., and Gary, Maciel, E., MRS Symp. Proc. 271, 739 (1992).Google Scholar
14 Narsavage, D.M., Interrante, L.V., Marchetti, P.S., and Maciel, G., Chem. Mater. 3, 721 (1991).Google Scholar
15 Interrante, L.V., Czekaj, C.L., Hackney, M.L., Sigel, G.A., Shields, P.L. and Slack, G.A., MRS Sympos. Proc. 121, 465 (1988); Czekaj, CL.; Hackney, M.L.; Hurley, W.J., Jr.; Interrante, L.V.; Sigel, G.A.; J. Am. Ceram. Soc. 73, 352 (1990); W.R. Schmidt, W.J. Hurley, Jr., V. Sukumar, R.H. Doremus, and L.V.Interrante, MRS Sympos. Proc. 171, 79 (1990); L.V. Interrante, W.J. Hurley, Jr., W.R. Schmidt, D. Kwon, R.H. Doremus, P.S. Marchetti, and G. Maciel, Ceram. Trans. 19, 3 (1991) ; W.R. Schmidt, W.J. Hurley, Jr., R.H. Doremus, L.V. Interrante, and P.S. Marchetti, Ceram. Trans. 19, 19 (1991); L.V. Interrante, W.R. Schmidt, S.N. Shaikh, R. Garcia, P.S. Marchetti, and G. Maciel, pp. 777–787 in “Chemical Processing of Advanced Materials”, Vol. 206, Series E: Applied Sciences, L.L. Hench and J.K. West, eds., J. Wiley and Sons (1992).Google Scholar
16 Elemental analysis of the 1000 °C HPCS-SiC gave the following results: %C, 27.9; %H, 0.7; %Si, 63.1; %0, 3.49.Google Scholar
17 Unpublished work of Shi, W., -, C. Yang, Y., and Interrante, L.V., Rensselaer Polytechnic Institute.Google Scholar
18 Yang, C-Y., Marchetti, P., and Interrante, L.V., Polymer Preprints 33 (2), 208 (1992); F. Babonneau, L. Bois, C-Y. Yang, and L.V. Interrante, Chem. Mater. 6, 51 (1994).Google Scholar
19 “Encyclopedia of Polymer Science and Engineering”, Volume 6, John Wiley & Sons, New York (1986).Google Scholar
20 Kennith Smith, Dr., GE CRD (private communication).Google Scholar
21 Davidson, I.M., Ring, M.A., J. Chem. Soc, Faraday Trans. 76, 1520 (1980); M.A. Ring, H.E. O'Neal, S.F. Rickborn, B.A. Sawray, Organometallics 2, 1891 (1983).Google Scholar
22 Hai Tod, J., Laine, R., et al. , J. Amer. Ceram. Soc. 74, 670 (1991). The % theoretical density was calculated from the rule of mixtures, using the relative weights and the published density values for the Nicalon fiber cloth. A value of 2.35g/cm3 was used for the AHPCS-SiC matrix material. This was obtained by direct measurement on a densified pellet of 1000 °C AHPCS-SiC The pellet was prepared by VPIP (8 cycles) starting from a preform derived by hot-pressing (200 °C; 360 kg/cm2) a mixture of finely-ground 1000 °C AHPCS-SiC powder and HPCS as a binder in a pellet press. duPont de Nemours & Co., Wilmington, DE, Product Data Sheet.Google Scholar