Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:46:10.605Z Has data issue: false hasContentIssue false

High Temperature Studies of Stoichionetric Cerium Dioxide

Published online by Cambridge University Press:  26 February 2011

J. Faber
Affiliation:
Argonne National Laboratory, Materials Science Div., Argonne, IL, 60439
R. L. Hitterman
Affiliation:
Argonne National Laboratory, Materials Science Div., Argonne, IL, 60439
Get access

Abstract

High-resolution, neutron time-of-flight Bragg scattering measurements have been carried out on polycrystalline CeO2 as a function of temperature (20<T<1200C). Systematic deviations between theory and experiment for the integrated intensities of the Bragg reflections were observed; these deviations increased with increasing temperature. The deviations result from cubic anharmonic interactions that appear only on the oxygen sublattice. The results are discussed in terms of higher order cumulant tensor representations. We observe that these anharmonic interactions exhibit the same symmetry as those associated with defects incorporated into the fluorite lattice when CeO2 is made nonstoichiometric.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Faber, J. Jr., Seitz, M. A. and Mueller, M. H., J. Phys. Chem. Solids 37, 903 (1976), and references therein.CrossRefGoogle Scholar
2. Faber, J. Jr., Seitz, M. A. and Mueller, M. H., J. Phys. Chem. Solids 37, 909 (1976), and references therein.CrossRefGoogle Scholar
3. Willis, B. T. M., and Pryor, A. W., Thermal Vibrations in Crystallography, Cambridge University Press, Cambridge, 1975, pp142174.Google Scholar
4. Johnson, C. K., Thermal Neutron Diffraction, ed. Willis, B. T. M., Clarendon Press, Oxford, 1970, Chapter 9.Google Scholar
5. Faber, J. Jr., and Hitterman, R. L., Advances in X-Ray Analysis 29, Plenum Press, New York, 1985, pp 119130.Google Scholar
6. Jorgensen, J. D. and Faber, J. Jr., ICANS-VI Meeting, ANL, June 27-July 2, 1982, ANL Report ANL-82-80 (1983), pp. 105114.Google Scholar
7. MacEwen, S. R., Faber, J. Jr., and Turner, A. P. L., Acta Met 31, 657 (1983) contains a brief instrument description of the GPPD.CrossRefGoogle Scholar
8. Bevan, D. J. M. and Kordis, J., J. Inorg. Nucl. Chem. 26, 1509 (1964); R. J. Panlener, Ph.D. Dissertation, Marquette University, Milwaukee, Wisconsin (1972).CrossRefGoogle Scholar
9. Faber, J. Jr., and Hitterman, R. L., Rev. Sci. Inst., to be published.Google Scholar
10. Rietveld, H. M., J. Appl. Cryst. 2, 65 (1969); R. B. von Dreele, J. D. Jorgensen and C. G. Windsor, J. Appl. Cryst. 15, 581 (1982).CrossRefGoogle Scholar
11. Prince, E., Mathematical Techniques in Crystallography and Materials Science, Springer-Verlag, New York, 1982, pp 6972.Google Scholar
12. Matias, P., private communication, 1984; F. J. Rotella, private communcation, 1985.Google Scholar
13. Hamilton, W. C., Acta Cryst. 18, 502 (1965).CrossRefGoogle Scholar
14. Faber, J. Jr., and Hitterman, R. L., to be published.Google Scholar