Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-07T20:30:37.447Z Has data issue: false hasContentIssue false

High Temperature Humidity Sensing Materials

Published online by Cambridge University Press:  21 February 2011

Ping Ping Tsai
Affiliation:
Rutgers, The State University of New Jersey Dept. of Chemistry New Brunswick, New Jersey 08903
Shigeo Tanase
Affiliation:
Rutgers, The State University of New Jersey Dept. of Chemistry New Brunswick, New Jersey 08903
Martha Greenblatt*
Affiliation:
Rutgers, The State University of New Jersey Dept. of Chemistry New Brunswick, New Jersey 08903
*
*Author to whom correspondence should be addressed
Get access

Abstract

New proton conducting materials were prepared and characterized for potential applications in humidity sensing at temperatures higher than 100°C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO3)2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 nmm Hg water vapor pressure at 578°C, with short response time(-30 sec). Polycrystalline samples of α-Zr(HPO4)2 and KMO3 P5.8Si2O25, and the gel converted ceramic, 0.10Li2O-0.25P2O5-0.65SiO2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 nmn Hg to 1 atm water vapor pressure at 179*C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iwahara, H., Uchida, H. and Kondo, J., J. Appl. Electrochem. 13, 365 (1983).CrossRefGoogle Scholar
2. Nagata, K., Nishino, M. and Goto, K.S., J. Electrochem. Soc. 134, 1850 (1987)Google Scholar
3. Yamamoto, T. and Shimizu, H., IEEE Trans., 149–152 (1981).Google Scholar
4. Uno, S., Mituo, H., Hideaki, H. and Yokomizo, Y., Proceedings of the 2nd Sensor Symposium, 85–88 (1982).Google Scholar
5. Uchikawa, F., Shimamoto, K. and Nishiura, H., Hyomen Kagaku E, 214 (1985).Google Scholar
6. Sadaoka, Y. and Sakai, Y., J. Mat. Sci. Lett. 5, 656 (1986).Google Scholar
7. Sadaoka, Y., Aono, H., Sakai, Y., Nakayama, S. and Kurosima, H., J. Mat. Sci. Lett. 5, 923 (1986).Google Scholar
8. Sadaoka, Y. and Sakai, Y., J. Mat. Sci. 20, 3027 (1985).Google Scholar
9. Uchikawa, F., Miyao, K., Horii, H. and Shimamoto, K., Denki Kagaku 51, 890 (1983).Google Scholar
10. Sadaoka, Y., Sakai, Y. and Mitsui, S., Sensors and Actuators 13, 147 (1988).Google Scholar
11. Sadaoka, Y., Matsuguchi, M., Sakai, Y. and Mitsui, S., J. Mat. Sci. 22, 2666 (1988).CrossRefGoogle Scholar
12. Sadaoka, Y., Matsuguchi, M., Sakai, Y. and Mitsui, S., J. Mat. Sci. 22, 2975 (1987).Google Scholar
13. Montoneri, E., Tieghi, G. and Modica, G., Solid State Ionics 24, 137 (1987).Google Scholar
14. Montoneri, E., Modica, G. and Pappalardo, G.C., Solid State Ionics 26 203 (1988).CrossRefGoogle Scholar
15. Alberti, G., Casciola, M., Costantino, U. and Radi, R., Gazz. Chim. Ital. 19 421 (1979).Google Scholar
16. Alberti, G., Casciola, M., Costantino, U. and Leonardi, M., Solid State Ionics 14, 289 (1984).CrossRefGoogle Scholar
17. Jerus, P. and Clearfield, A., Solid State Ionics 6, 79 (1982).Google Scholar
18. Yde-Anderson, S., Lundsgaard, J.S., Malling, J. and Jensen, J., Solid State Ionics 13, 81 (1984).Google Scholar
19. Hayri, E.A., Greenblatt, M., Tsai, M.T. and Tsai, P.P., Solid State Ionics in press.Google Scholar
20. Leclaire, A., Borel, M.M., Grandin, A. and Raveau, B., Mat. Chem. Phys. 12, 537 (1985).Google Scholar
21. Wang, E., Rinaldi, F. and Greenblatt, M., Mat. Res. Bull. 23, 113 (1988).Google Scholar
22. Prof. Ruren Xu, Jilin University, China.Google Scholar
23. Hayri, E.A. and Greenblatt, M., J. Noncryst. Solids 24, 387 (1987).Google Scholar
24. Clearfield, A. and Pack, S.P., J. Inorg. Nucl. Chem. 37, 1283 (1975).Google Scholar
25. Alberti, G., Casciola, M., Costantino, U., Levi, G. and Ricciardi, G., J. Inorg. Nucl. Chem. 30, 1093 (1978).Google Scholar
26. Chernorukov, N.G., Korshunov, I.A. and Zhuk, M.I., Russian J. Inorg. Chem. 22, 1119 (1977).Google Scholar
27. Clearfield, A., Inorganic Ion Exchange Materials, CRC press, Inc., Boca Raton, Florida, 9–11 (1982).Google Scholar