Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:42:31.041Z Has data issue: false hasContentIssue false

High Temperature Deformation of Single Crystals of NiAl

Published online by Cambridge University Press:  01 January 1992

Keith R. Forbes
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.
Uwe Glatzel
Affiliation:
Institut fur Metallforschung, BH18, Technische Universität Berlin, 1000 Berlin 12, FRG.
R. Darolia
Affiliation:
Engineering Materials Technology Laboratories, GE Aircraft Engines, 1 Newman Way, Cincinnati, OH 45215.
William D. Nix
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.
Get access

Abstract

The high temperature deformation properties of single crystals of stoichiometric NiAl have been studied in tension creep and in constant strain rate compression at temperatures between 850 and 1200°C. Samples were tested in a “soft”, [223], orientation and the “hard”, [001], orientation. The samples exhibit a strong orientation dependence of the strength and show other revealing deformation characteristics. The activation energy for steady state flow in both hard and soft orientations is near that for lattice self diffusion. Soft oriented crystals reach steady state rapidly and develop little dislocation substructure. Deformation of these soft oriented crystals occurs by the glide of b=<001> dislocations.

The creep curves of hard oriented crystals show pronounced sigmoidal creep, suggesting that the dislocations move in a sluggish manner, multiply in the early stages of creep and, ultimately, lead to strain hardening. Hard oriented crystals also develop extensive dislocation substructure during creep. This dislocation substructure is composed of b=<100> dislocations, which have no resolved shear stress for glide. Evidence for {101}<101> glide in hard oriented crystals is presented and a model is developed by which the decomposition of gliding b=<101> dislocations can produce the observed b=<100> dislocation networks. The increased creep resistance of hard oriented crystals compared to soft oriented crystals is described in terms of the differences in dislocation mobility and substructure formation for deformation in these directions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Miracle, D. B., Russell, S. and Law, C. C. in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S. and Koch, C. C. (Mater. Res. Soc. Proc, 133, Pittsburgh, PA, 1989) pp. 225230.Google Scholar
2. Darolia, R., Lahrman, D. F., Field, R. D. and Freeman, A. J. in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S. and Koch, C. C. (Mater. Res. Soc. Proc, 133, Pittsburgh, PA, 1989) pp. 113118.Google Scholar
3. Darolia, R., Journal of Metals 43, 44 (1991).Google Scholar
4. Ball, A. and Smallman, R. E., Acta Metall. 14, 1517 (1966).Google Scholar
5. Ball, A. and Smallman, R. E., Acta Metall. 14, 1349 (1966).Google Scholar
6. Vandervoort, R. R., Mukerjee, A. K. and Dorn, J. E., Transactions of the ASM 59, 930 (1966).Google Scholar
7. Strutt, P. R. and Dodd, R. A. in Structural Application and Physical Metalurgy, edited by Kear, , Sims, and Stoloff, (1970) pp. 475503.Google Scholar
8. Bevk, J., Dodd, R. A. and Strutt, P. R., Metallurgical Transactions 4, 159 (1973).Google Scholar
9. Field, R. D., Lahrman, D. F. and Darolia, R., Acta metall. mater. 2951 39 2951(1990).Google Scholar
10. Zaluzec, N. J. and Fraser, H. L., Scripta metallurgica 8, 1049 (1974).Google Scholar
11. Noebe, R. D., Bowman, R. R., Cullers, C. L. and Raj, S. V. in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P. and Stiegler, J. O. (Mater. Res. Soc. Proc, 213, Pittsburgh, PA, 1990), pp. 589596.Google Scholar
12. Pascoe, R. T. and Newey, C. W. A., Metal Science Journal 5, 50 (1971).Google Scholar
13. Strutt, P. R., Dodd, R. A. and Rowe, G. M., Proc. 2nd Int. Conf. on Metals and Alloys, (Am. Soc. Metals, 3, Metals Park, 1970) pl057.Google Scholar
14. Yang, W. J. and Dodd, R. A., Metal Science Journal 7, 41 (1973).Google Scholar
15. Whittenberger, J. D., Journal of Materials Science 22, 394 (1987).Google Scholar
16. Hancock, G. F. and McDonnell, B. R., Phys. Stat. Sol. 4, 143 (1971).Google Scholar
17. Wasileski, R. J., Transactions of the Meturlurgical Society of AIME 236, 455 (1966).Google Scholar
18. Glatzel, U., Forbes, K. R. and Nix, W. D., these Proceedings.Google Scholar
19. Haasen, P. in Dislocation Dynamics edited by Rosenfield, A. R., Hahn, G. T., Bement, A. L. and Jaffe, R. I. (McGraw-Hill, New York, 1967) pp 701722.Google Scholar
20. Forbes, K. R. and Nix, W. D., these Proceedings..Google Scholar
21. Glatzel, U., Forbes, K. R. and Nix, W. D., accepted for publ. in Phil.Mag. Google Scholar
22. Hull, D. and Bacon, D. J., Introduction to Dislocations, 3rd ed. (Pergamon Press, Oxford, 1984) p. 185.Google Scholar
23. Mills, M. J. and Miracle, D. B., submitted to Acta metall. mater. Google Scholar
24. Alden, T. H., Trans. AIME 230, 649 (1964).Google Scholar
25. Mills, M. J., Daw, M. S. and Miracle, D. B., these Proceedings.Google Scholar