Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T08:16:39.229Z Has data issue: false hasContentIssue false

High Spatial Resolution Strain Measurements Within Bulk Materials by Slit-Imaging

Published online by Cambridge University Press:  10 February 2011

U. Lienert
Affiliation:
European Synchrotron Radiation Facility, 6 rue Jules Horowitz, B.P. 220, 38043 Grenoble Cedex, France, [email protected]
R. Martins
Affiliation:
European Synchrotron Radiation Facility, 6 rue Jules Horowitz, B.P. 220, 38043 Grenoble Cedex, France, [email protected]
S. Grigull
Affiliation:
European Synchrotron Radiation Facility, 6 rue Jules Horowitz, B.P. 220, 38043 Grenoble Cedex, France, [email protected]
M. Pinkerton
Affiliation:
Manchester Materials Science Centre, Grosvenor St., M17HS, Manchester, England
H.F. Poulsen
Affiliation:
Materials Research Department, Risø National Laboratory, 4000 Roskilde, Denmark
Å. Kvick
Affiliation:
European Synchrotron Radiation Facility, 6 rue Jules Horowitz, B.P. 220, 38043 Grenoble Cedex, France, [email protected]
Get access

Abstract

High energy synchrotron radiation is employed for residual strain measurements from local gauge volumes within the bulk of polycrystalline materials. The longitudinal spatial resolution is defined by placing a narrow imaging slit behind the sample and recording the intensity distribution on a position sensitive detector. It is shown that the sample to slit distance can be increased without sacrificing longitudinal resolution by applying a reconstruction technique. Hence, space is provided for large samples and sample environments. The reconstruction technique is described and validated by measuring the residual strain profile of a shot-peened Al sample. A longitudinal gauge length of 95 üm is achieved at 52 keV with a sample to slit distance of 10 cm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lienert, U., Poulsen, H. F., and Kvick, Å., submitted to the AIAA Journal.Google Scholar
2. Poulsen, H.F., Garbe, S., Lorentzen, T., Jensen, D. Juul, Poulsen, F.W., Andersen, N.H., Frello, T., Feidenhans'l, R., and Graafsma, H., J. Synchrotron Rad. 4, p. 147 (1997).10.1107/S0909049597002021Google Scholar
3. Webster, P.J., Vaughan, G.B.M., Mills, G., and Kang, W.P., Mater. Sci. Forum vol. 278–81, p. 323 (1998).10.4028/www.scientific.net/MSF.278-281.323Google Scholar
4. Nielsen, S. F., Wolf, A., Poulsen, H. F., Ohler, M., Lienert, U., and Owen, R. A., submitted to J. of Synchrotron Rad.Google Scholar
5. He, B.B. & Smith, K.L., Proc. SEM Spring Conference on Experimental and Applied Mechanics, Houston, Texas, p. 217 (1998).Google Scholar
6. Martins, R.V., Kvick, Å., Lienert, U., Poulsen, H.F., and Pyzalla, A., Proceedings of the 20th Risø International Symposium on Materials Science, p. 411 (1999).Google Scholar