Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T04:37:30.109Z Has data issue: false hasContentIssue false

High Rate Growth of YBa2Cu3O7-x Thin Films using Pulsed Excimer Laser Deposition

Published online by Cambridge University Press:  16 February 2011

R. E. Muenchausen
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545
X. D. Wu
Affiliation:
J. Robert Oppenheimer Fellow
S. Foltyn
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545
R. C. Estler
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545
R. C. Dye
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545
A. R. Garcia
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545
N. S. Nogar
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545
P. England
Affiliation:
Bellcore, Red Bank, NJ, 07701
R. Ramesh
Affiliation:
Bellcore, Red Bank, NJ, 07701
D. M. Hwang
Affiliation:
Bellcore, Red Bank, NJ, 07701
T. S. Ravi
Affiliation:
Bellcore, Red Bank, NJ, 07701
C. C. Chang
Affiliation:
Bellcore, Red Bank, NJ, 07701
X. X. Xi
Affiliation:
Rutgers University, Piscataway, NJ, 08854
Q. Li
Affiliation:
Rutgers University, Piscataway, NJ, 08854
A. Inam
Affiliation:
Rutgers University, Piscataway, NJ, 08854
T. Venkatesan
Affiliation:
Rutgers University, Piscataway, NJ, 08854
Get access

Abstract

We report here on the pulsed laser deposition of high quality, superconducting, 200 nm thick films of YBa2Cu3O7-x at rates approaching 15 nm/s. Film crystallinity and electrical properties were studied as a function of deposition rate from 0.1 to 14.5 nm/s. Though some degradation in the film crystallinity is observed by RBS channeling and X-ray rocking curve measurements, critical current densities (Jc = 4 × 106 A/cm2, 77 K, B = 0) are effectively unchanged in going to the higher deposition rates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sandstrom, R. L., Gallagher, W. J., Dinger, T. R., Laibowitz, R. B., Koch, R. H., and Gambino, R. J., Appl. Phys. Lett 53, 925 (1988).Google Scholar
2. Westwood, N. D., MRS Bull. 13, 47 (1988).Google Scholar
3. Missert, N., Hammond, R., Mooig, J. E., Matijasevic, V., Rosenthal, P., Geballe, T. H., Kapitulnik, A., and Beasley, M. R., IEEE Trans. Mag. 25, 2418 (1988)Google Scholar
4. Geerk, J., Linker, G., and Meyer, O., Mat. Sci. Rep., 193 (1989).Google Scholar
5. Xi, X. X., Linker, G., Meyer, O., Nold, E., Obsr, B., Ratzel, F., Smithey, R., Strehlau, B., Weschenfelder, F., and Geerk, J., Z. Phys. B74, 13 (1989)Google Scholar
6. Roas, B., Schultz, L., and Endres, G., Appl. Phys. Lett., 53, 1557 (1988).Google Scholar
7. Venkatesan, T., Wu, X. D., Dutta, B., Inam, A., Hedge, M. S., Hwang, D. M., Chang, C. C., Nazar, L., and Wilkens, B., Appl. Phys. Lett., 54, 581 (1989).Google Scholar
8. Koren, G., Gupta, A., Giess, E. A., Segmuller, A., and Laibowitz, R. B., Appl. Phys. Lett., 54, 1054 (1989).Google Scholar
9. Wu, X. D., Muenchausen, R., Foltyn, S., Estler, R. C., Dye, R. C., Nogar, N. S., Garcia, A. R., Martin, J. A., and Tesmer, J. R., Appl. Phys. Lett., (in press).Google Scholar
10. Goehegan, D. B., and Mashburn, D. N., Appl. Phys. Lett., 55, 2345 (1989).Google Scholar
11. Muenchausen, R. E., Hubbard, K. M., Foltyn, S., Estler, R. C., and Nogar, N. S., Appl. Phys. Lett., 56, 578 (1990).Google Scholar