Article contents
High Rate Deposition of Microcrystalline Silicon Solar Cells Using 13.56 MHz PECVD – Prerequisites and Limiting Factors
Published online by Cambridge University Press: 01 February 2011
Abstract
Microcrystalline silicon (μìc-Si:H) solar cells were prepared in a wide range of deposition parameters using high pressure 13.56 MHz plasma-enhanced chemical vapor deposition (PECVD). Focus was on the influence of deposition pressure, electrode distance and the application of a pulsed plasma on high rate deposition of solar cells. At electrode distances between 5 and 20 mm solar cells with efficiencies >8 % were prepared. A medium electrode distance of 10 mm yielded best device performance. Pulsed plasma deposition leads to good results at medium deposition rates of ∼5 Å/s, for higher rates a strong decrease of efficiency was observed. The highest efficiencies in a small area reactor were 8.9 % for CW and 8.4 % for pulsed plasma. We also succeeded in preparing μc-Si:H and a-Si:H/μc-Si:H solar cells in a 30x30 cm2 reactor with efficiencies of 9 % and 12.5 %, respectively.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2002
References
- 3
- Cited by