Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:05:38.241Z Has data issue: false hasContentIssue false

High Quality Epitaxial Growth on in-Situ Patterned Inp Substrates

Published online by Cambridge University Press:  28 February 2011

H. Temkin
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
L. R. Harriott
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
J. Weiner
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
R. A. Hamm
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
M. B. Panish
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

We demonstrate a vacuum lithography process which uses a finely focused Ga ion beam to write the pattern which is then transferred to the InP pattern by low energy dry etching. Surface steps on the order of 1000-2000A in height, and lateral resolution limited only by size of the ion beam, can be efficiently prepared using moderate Ga ion fluences. The surfaces prepared by this process are damage free and suitable for epitaxial overgrowth. GaInAs/InP heterostructures grown on in-situ patterned substrates show excellent morphology and high luminescence efficiency.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Takamori, A., Miyauchi, E., Airmoto, H., Hashimoto, Y., Jpn. J. Appl. Phys. 23, L599 (1984).CrossRefGoogle Scholar
[2] Ochiai, Y., Gamo, K., and Namba, S., J. Vac. Sci. Techol. B3, 671 (1985).Google Scholar
[3] Harriott, L.R., Appl. Surf. Sci. 34, 11 (1998).Google Scholar
[4] Melngailis, J., J. Vac. Sci. Technol. B5, 496 (1987).Google Scholar
[5] Proceedings Japan-US Seminar on Focused Ion Beam Technology and Applications, edited by Harriott, L. R., in J. Vac. Sci. Technol. B6, 9661025 (1988).Google Scholar
[6] Temkin, H., Harriott, L. R., and Panish, M. B., Appl. Phys. Lett. 52, 1478, (1988)CrossRefGoogle Scholar
[7] Temkin, H., Harriott, L. R., Hamm, R. A. Weiner, J., and Panish, M. B., Appl. Phys. Lett. 54, 1465 (1989)CrossRefGoogle Scholar
[8] Panish, M. B., Temkin, H., and Sumski, S., J. Vac. Sci. Technol. B3, 657 (1985).CrossRefGoogle Scholar
[9] Panish, M. B., Prog. Cryst. Growth Charact. 12, 1 (1986).CrossRefGoogle Scholar
[10] Demo, N. L., Donnelly, J. P., O'Donnelly, F. J., Geis, M. W., and O'Connor, K. J., Nucl. Instrum. Methods B7, 814 (1985).CrossRefGoogle Scholar
[11] Wada, O., J. Phys. D17, 2429 (1984).Google Scholar
[12] Harriott, L. R., Scotti, R. E., Cummings, K. D., and Ambrose, A. F., J. Vac. Sci. Technol. B5, 207 (1988).Google Scholar
[13] Temkin, H., Dutt, B. V., Mat. Res. Soc. Symp. vol. 14, 253 (1983).CrossRefGoogle Scholar
[14] LaMarche, P. H., Levi-Setti, R., and Wang, Y. L., J. Vac. Sci. Technol. B1, 1056 (1983).CrossRefGoogle Scholar
[15] Cummings, K. D., Harriott, L. R., Chi, G. C., and Ostermayer, F. Jr, Appl. Phys. Lett. 48, 659 (1986).CrossRefGoogle Scholar
[16] Arimoto, H., Kosugi, M., Kitada, H., and Miyauchi, E., Micro Circuit Engineering 1988, Vienna.Google Scholar