Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:35:36.025Z Has data issue: false hasContentIssue false

High Quality Epitaxial Films of ZnSe and ZnSe/ZnS Strained Layer Superlattices Grown by MOCVD

Published online by Cambridge University Press:  25 February 2011

Chungdee Pong
Affiliation:
Department of Materials Science and Engineering, Stanford University, CA 94305
R. C. DeMattei
Affiliation:
Department of Materials Science and Engineering, Stanford University, CA 94305
R. S. Feigelson
Affiliation:
Department of Materials Science and Engineering, Stanford University, CA 94305
Get access

Abstract

High quality epitaxial films of ZnSe and ZnSe/ZnS strained layer superlattices (SLS) have been grown on (100) GaAs substrates using diethylZinc, dimethylSelenide, diethylSelenide, and propyleneSulfide as reagents in both atmospheric and low pressure environment. This source combination produces the results showing the influence of process conditions, such as reagent flow ratio (fv1/f11) and substrate temperature, on the film stoichiometry, surface morphology, and crystalline quality. Low temperature photoluminescence (PL), Rutherford backscattering spectrometry (RBS), cross-sectional TEM, and x-ray diffraction have been used to characterize the films. Photoluminescence studies at 2.8 K on samples of ZnSe/ZnS strained layer superlattices; 10 periods ZnSe(1.5 nm)/ZnS(8.5 nm), have shown quantum size effect with the peak energy blue-shifted to 3.03 eV with the FWHM=73 meV. Atomic force microscopy (AFM) was applied to study surface morphology of multilayer samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wright, P. J., Cockayne, B., Parbrook, P. J., O'Donnell, K. P., and Henderson, B., Semicond. Sci. Tec h nol. 6, A29 (1991).CrossRefGoogle Scholar
2. Yokogawa, T., Sato, H., and Ogura, M., J. Appl. Phys. 64 (10), 5201 (1988).CrossRefGoogle Scholar
3. Yokogawa, T., Saitoh, T., and Narrusawa, T., Appl. Phys. Lett. 58 (16), 1754 (1991).CrossRefGoogle Scholar
4. Yokogawa, T., Ogura, M., and Kajiwara, T., Appl. phys. Lett. 49 (25), 1702 (1986).CrossRefGoogle Scholar
5. Haase, M. A., Qiu, J., DePuydt, J. M., and Cheng, H., Appl. Phys. Lett. 59 (11), 1272 (1991).CrossRefGoogle Scholar
6. Jeon, H., Ding, J., Nurmikko, A. V., Luo, H., Samarth, N., and Furdyna, J., Appl. Phys. Lett. 59(11), 1293(1991).CrossRefGoogle Scholar
7. Sun, G., Shahzad, K., Gaines, J. M., and Khurgin, J. B., Appl. Phys. Lett. 59 (3), 310 (1991).CrossRefGoogle Scholar
8. Chemia, D. S. and Miller, D. A. B., J. Opt. Soc. Am. B 2 (7), 1155 (1985).CrossRefGoogle Scholar
9. Herman, M. A., Bimberg, D., and Christen, J., J. Appl. Phys. 70 (2), R1 (1991).CrossRefGoogle Scholar
10. Wright, P. J. et al., J. Crystal Growth 94, 441 (1989).CrossRefGoogle Scholar
11. Blanconnier, P., Thin Solid Films 55, 375 (1978).CrossRefGoogle Scholar
12. Cheng, H., Depuydt, J. M., Haase, M., and Potts, J. E., Appl. Phys. Lett. 56 (9), 848 (1990).CrossRefGoogle Scholar
13. Yao, T. et al., Jpn. J. Appl. Phys. 22 (3), L144.CrossRefGoogle Scholar
14. Ohmi, K., Suemune, I., Kanda, T., Kan, Y., and Yamanishi, M., J. Crystal Growth 86, 467 (1988).CrossRefGoogle Scholar
15. Shibata, N. et al., Jpn. J. Appl. Phys. 26 (8), 1305.CrossRefGoogle Scholar
16. Howland, R. and Kirk, M., Supercond. Industry, 1991, 25.Google Scholar