Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T10:43:51.051Z Has data issue: false hasContentIssue false

High Quality Deposition of Strontium Titanate (STO) Thin Films using Sol-Gel Method

Published online by Cambridge University Press:  01 February 2011

Kiyoshi Uchiyama
Affiliation:
[email protected], Nara Institute of Science and Technology, Graduate School of Materials Science, Takayama-cho 8916-5, Ikoma, 630-0192, Japan, +81-743-72-6061, +81-743-72-6069
Daiki Fukunaga
Affiliation:
[email protected], Nara Institute of Science and Technology, Graduate School of Materials Science, Takayama-cho 8916 -5, Ikoma, Nara 630-0192, Japan
Tadashi Shiosaki
Affiliation:
[email protected], Nara Institute of Science and Technology, Graduate School of Materials Science, Takayama-cho 8916-5, Ikoma, Nara 630-0192, Japan
Get access

Abstract

Highly oriented strontium titanate (STO) thin films were successfully deposited on sapphire substrates using a sol-gel method. Sintering temperature of 1400°C and the use of c-cut sapphire for the substrates are the keys to obtain highly oriented thin films. The sample obtained on c-cut sapphire with a sintering temperature of 1400°C showed quite high (111)-orientation and a narrow full width half maximum (FWHM) value of 0.265°, which indicates a high quality deposition of the STO thin films.

We believe this high quality STO deposition technique will bring a new scope of oxide material applications for future electronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yoshimura, T., Arai, R., Masuko, K., Ashida, A. and Fujimura, N., Jpn. J. Appl. Phys. 45, L1266 (2006).Google Scholar
2. Tokumitsu, E., Senoo, M. and Miyasako, T., Microelectronic Engineering 80, 305 (2005).Google Scholar
3. Yoon, D.-S., Kim, C.-J., Lee, J.-S., Lee, W.-J. and No, K., J. Mater. Res. 9, 420 (1994).Google Scholar
4. Yoon, D.-S., Kim, C.-J., Lee, J.-S., Choi, C.-G., Lee, W.-J. and No, K., Mat. Res. Soc. Symp. Proc. 343, 499(1994).Google Scholar
5. Nashimoto, K., Nakamura, S., Morikawa, T., Moriyama, H., Watanabe, M. and Osakabe, E., Jpn. J. Appl. Phys. 38, 5641(1999).Google Scholar
6. Ishii, M., Satoh, K., Kato, M. and Kurihara, K., Proc. 2004 Int. Symp. Applications of Ferroelectrics, 77 (2004).Google Scholar
7. Uchiyama, K., Kasamatsu, A., Otani, Y. and Shiosaki, T., Integrated Ferroelectr. 84, 129 (2006).Google Scholar
8. Uchiyama, K., Kasamatsu, A., Otani, Y. and Shiosaki, T., Jpn. J. Appl. Phys., 46, L244 (2007).Google Scholar
9. Echizen, M., Nishida, T., Nozaka, T., Takeda, H., Uchiyama, K. and Shiosaki, T., Jpn. J. Appl. Phys. 46, 6933 (2007).Google Scholar
10. Uchiyama, K., Shiosaki, T., Kosaka, T., Kasamatsu, A. and Echizen, E., Ceramic International, (in press).Google Scholar
11. Loginov, V. E., Hollmann, E. K., Kozyrev, A. B. and Prudan, A. M., Vacuum 51, 141 (1998).Google Scholar