Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T05:59:02.970Z Has data issue: false hasContentIssue false

High Quality CdTe Growth by Gradient Freeze Method

Published online by Cambridge University Press:  25 February 2011

A. Tanaka
Affiliation:
Electronics Materials Laboratory, Sumitomo Metal Mining Co., Ltd. Suehiro-cho, Ohme-shi, Tokyo 198, Japan
Y. Masa
Affiliation:
Electronics Materials Laboratory, Sumitomo Metal Mining Co., Ltd. Suehiro-cho, Ohme-shi, Tokyo 198, Japan
S. Seto
Affiliation:
Electronics Materials Laboratory, Sumitomo Metal Mining Co., Ltd. Suehiro-cho, Ohme-shi, Tokyo 198, Japan
T. Kawasaki
Affiliation:
Electronics Materials Laboratory, Sumitomo Metal Mining Co., Ltd. Suehiro-cho, Ohme-shi, Tokyo 198, Japan
Get access

Abstract

The vertical Bridgman method, a gradient freeze technique, is feasible for the growth of high quality, large CdTe crystals. The equi-composition contour of Zn in doped crystals has been used to reveal the solid-liquid interface shape in the growth process. A slow cooling rate is necessary to obtain a convex interface shape. A low temperature gradient at the solid-liquid interface, down to 2 °C/cm, and Zn doping are found to be effective to reduce the etch pit density to 5×103/cm2 (minimum) to 104/cm2 (average). The crystallographic quality has been evaluated by means of X-ray diffraction, X-ray topography, etch pit delineation with the Nakagawa etchant, infrared measurements, photoluminescence and Hall effect measurements. CdTe crystals are found to be free from subgrain structure, Te precipitates and deep levels, and have high electron mobility.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bubulac, L. O., Tennant, W. E., Edwall, D. D., Gertner, E. R. and Robinson, J. C., J. Vac. Sci. Technol. A3 (1), 163 (1985)CrossRefGoogle Scholar
2. Lu, Y. C., Feigelson, R. S., Route, R. K. and Rek, Z. U., J. Vac. Sci. Technol. A4 (4), 2190 (1986)CrossRefGoogle Scholar
3. Yamamoto, T., Miyamoto, Y. and Tanikawa, K., J. Cryst. Growth 72, 270 (1985)CrossRefGoogle Scholar
4. Khan, A. A., Allred, W. P., Dean, B., Hooper, S., Hawkey, J. E. and Johnson, C. J., J. Electronic Mater. 15 (3), 181 (1986)CrossRefGoogle Scholar
5. Kyle, N. R., J. Electrochem. Soc. 118, 1790 (1971)CrossRefGoogle Scholar
6. Wood, L., Gertner, E. R., Tennant, W. E. and Bubulac, L. O., Procc. SPIE 350, 30 (1982)CrossRefGoogle Scholar
7. Route, R. K., Wolf, M. and Feigelson, R. S., J. Cryst. Growth 70, 379 (1984)CrossRefGoogle Scholar
8. Jasinski, T. and Witt, A. F., J. Cryst. Growth 71, 295 (1985)CrossRefGoogle Scholar
9. Inoue, M., Teramoto, I., Takayanagi, S., J. Appl. Phys. 33 (8), 2578 (1962)CrossRefGoogle Scholar
10. Nakagawa, K., Maeda, K. and Takeuchi, S., Appl. Phys. Lett. 34 (9), 574 (1979)CrossRefGoogle Scholar
11. Haga, T., Suzuki, H., Abe, H., Tanaka, A. and Suzuki, K., to be publishedGoogle Scholar
12. Shin, S. H., Bajaj, J., Moudy, L. A. and Cheung, D. T., Appl. Phys. Lett. 43 (1), 68 (1983)CrossRefGoogle Scholar
13. Triboulet, R. and Marfaing, Y., J. Appi. Phys. 45 (6), 2759 (1974)CrossRefGoogle Scholar
14. Segall, B., Lorenz, M. R. and Haisted, R. E., Phys. Rev., 129 (6), 2471 (1963)CrossRefGoogle Scholar