No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
The purpose of this study is to explore the potential of high pressure methods for preparation of new series of compounds in the A3(VO4)2 systems (A: Ca, Sr, Ba). In this study, we present our in situ vibrational and X-ray diffraction data on the behavior of the A3(VO4)2 compounds at high pressure and room temperature. Upon compression up to 290 kbar, there is no phase change in Ba3(VO4)2. Sr3(VO4)2 undergoes a first order phase transition to an olivine-like structure at about 150 kbar. In both the ambient pressure and olivine structures of Sr3(VO4)2, oxygen atoms form a hexagonal close packing. The packing in the olivine structure is distorted from this due to loss of 3-fold axis. Ca3(VO4)2 amorphizes at about 100 kbar. The high pressure behavior of the compounds studied here is related to the size of the A(2)2+ cations. Small Ca(2)2+ cations hinder the completion of crystal-to-crystal transformations in Ca3(VO4)2.